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P R E F A C E 

THE purpose of this book is to acquaint the reader with the 
principal phenomena and most important laws of physics. T h e 
authors have tried to make the book as compact as possible, 
including only what is essential and omitting what is of secondary 
significance. Fo r this reason the discussion nowhere aims at 
anything approaching completeness . 

T h e derivations of the formulae are given only in so far as they 
may help the reader in unders tanding the relations be tween 
phenomena. Formulae are therefore derived for simple cases 
wherever possible, on the principle that the systematic derivation 
of quantitative formulae and equations should rather appear in a 
textbook of theoretical physics. 

T h e reader is assumed to be familiar with algebra and trig
onometry and also to unders tand the fundamentals of the 
differential calculus and of vector algebra. H e is further expected 
to have an initial knowledge of the main ideas of physics and 
chemistry. T h e authors hope that the book will be useful to physics 
students at universities and technical colleges, and also to physics 
teachers in schools. 

This book was originally writ ten in 1937, but has not been 
published until now, for a variety of reasons . It has now been 
augmented and rewrit ten, but the plan and essential content 
remain unchanged. 

T o our profound regret, L. D . Landau, our teacher and friend, 
has been prevented by injuries received in a road accident from 
personally contributing to the preparat ion of this edition. W e have 
everywhere striven to follow the manner of exposit ion that is 
characteristic of him. 

W e have also a t tempted to retain as far as possible the original 
choice of material, being guided here both by the book in its 
original form and by the notes (published in 1948) taken from 
Landau 's lectures on general physics in the Applied Physics 
Depar tment of Moscow State Universi ty. 
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÷ PREFACE 
In the original plan, in order not to interrupt the continuity of 

the discussion, the methods of experimental study of thermal 
phenomena were to have been placed in a separate chapter at the 
end of the book. Unfortunately, we have not yet had an oppor
tunity to carry out this intention, and we have decided, in order 
to avoid further delay, to publish the book without that chapter . 

A . I. AKHIEZER 
June 1965 E . M . LIFSHITZ 
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C H A P T E R I 

P A R T I C L E M E C H A N I C S 

§ 1. The principle of the relativity of motion 

T h e fundamental concept of mechanics is that of motion of a 
body with respect to other bodies. In the absence of such other 
bodies it is clearly impossible to speak of motion, which is always 
relative. Absolute motion of a body irrespective of other bodies 
has no meaning. 

T h e relativity of motion arises from the relativity of the concept 
of space itself. W e cannot speak of position in absolute space 
independently of bodies therein, but only of position relative to 
certain bodies. 

A group of bodies which are arbitrarily considered to be at 
rest, the motion of other bodies being taken as relative to that 
group, is called in physics a frame of reference. A frame of 
reference may be arbitrarily chosen in an infinite number of 
ways , and the motion of a given body in different frames will in 
general be different. If the frame of reference is the body itself, 
then the body will be at rest in that frame, while in other frames 
it will be in motion, and in different frames it will move differently, 
i.e. along different paths. 

Different frames of reference are equally valid and equally 
admissible for investigating the motion of any given body. 
Physical phenomena, however , in general occur differently in 
different frames, and in this way different frames of reference may 
be distinguished. 

It is reasonable to choose the frame of reference such that 
natural phenomena take their simplest form. Let us consider 
a body so far from other bodies that it does not interact with 
them. Such a body is said to be moving freely. 

In reality, the condition of free motion can, of course , be 
fulfilled only to a certain approximation, but we can imagine in 
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2 PARTICLE MECHANICS [l 

principle that a body is free from interaction with other bodies to 
any desired degree of accuracy. 

F ree motion, like other forms of motion, appears differently in 
different frames of reference. If, however , the frame of reference 
is one in which any one freely moving body is fixed, then free 
motion of other bodies is especially simple: it is uniform motion 
in a straight line or, as it is sometimes called, motion with a 
velocity constant in magnitude and direction. This s ta tement 
forms the content of the law of inertia, first stated by Gali leo. A 
frame of reference in which a freely moving body is fixed is called 
an inertial frame. T h e law of inertia is also known as Newton's 
first law. 

It might appear at first sight that the definition of an inertial 
frame as one with exceptional propert ies would permit a defini
tion of absolute space and absolute rest relative to that frame. 
This is not so, in fact, since there exists an infinity of inertial 
frames: if a frame of reference moves with a velocity constant 
in magnitude and direction relative to an inertial frame, then it is 
itself an inertial frame. 

It must be emphasised that the existence of inertial frames of 
reference is not purely a logical necessity. T h e assert ion that 
there exist, in principle, frames of reference with respect to which 
the free motion of bodies takes place uniformly and in a straight 
line is one of the fundamental laws of Na tu re . 

By considering free motion we evidently cannot distinguish 
between different inertial frames. It may be asked whether the 
examination of other physical phenomena might in some way 
distinguish one inertial frame from another and hence select 
one frame as having special propert ies. If this were possible, we 
could say that there is absolute space and absolute rest relative 
to this special frame of reference. The re is, however , no such 
distinctive frame, since all physical phenomena occur in the same 
way in different inertial frames. 

All the laws of Na tu re have the same form in every inertial 
frame, which is therefore physically indistinguishable from, and 
equivalent to , every other inertial frame. This result, one of the 
most important in physics , is called the principle of relativity of 
motion, and deprives of all significance the concepts of absolute 
space, absolute rest and absolute motion. 

Since all physical laws are formulated in the same way in 
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§2] VELOCITY 3 

every inertial frame, but in different ways in different non-inertial 
frames, it is reasonable to s tudy any physical phenomenon in 
inertial frames, and we shall do so henceforward except where 
otherwise stated. 

The frames of reference actually used in physical experiments 
are inertial only to a certain approximation. F o r example , the 
most usual frame of reference is that in which the Ear th , on which 
we live, is fixed. This frame is not inertial, owing to the daily 
rotation of the Ear th on its axis and its revolution round the 
Sun. These motions occur with different and varying velocities 
at different points on the Ear th , and the frame in which the Ear th 
is fixed is therefore not inertial. However , because of the relative 
slowness of variation of the direction of the velocities in the 
Ear th ' s daily rotation on its axis and revolution round the Sun, 
we in fact commit a very small error , of no importance in many 
physical exper iments , by assuming that the " ter res t r ia l" frame of 
reference is an inertial frame. Although the difference be tween 
the motion in the terrestrial frame of reference and that in an 
inertial frame is very slight, it can nevertheless be observed, for 
example, by means of a Foucaul t pendulum, whose plane of 
oscillation slowly moves relative to the Ear th ' s surface (§31). 

§2. Velocity 
It is reasonable to begin the study of the laws of motion by 

considering the motion of a body of small dimensions. T h e 
motion of such a body is especially simple because there is no 
need to take into account the rotation of the body or the relative 
movement of different parts of the body. 

A body whose size may be neglected in considering its motion 
is called a particle, and is a fundamental object of study in 
mechanics. T h e possibility of treating the motion of a given body 
as that of a particle depends not only on its absolute size but also 
on the conditions of the physical problem concerned. F o r 
example, the Earth may be regarded as a particle in relation to 
its motion round the Sun, but not in relation to its daily rotation 
on its axis. 

The position of a particle in space is entirely defined by 
specifying three coordinates , for instance the three Car tes ian 
coordinates x, y, z. Fo r this reason a particle is said to have three 
degrees of freedom. T h e quantities x,y, ζ form the radius vector 
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4 PARTICLE MECHANICS [l 

Figure 1 shows the path of a particle and the radius vectors 
r and r + i/r at t imes t and t-l·dt. By the vector addition rule it is 
easily seen that the infinitesimal displacement ds of the particle 
is equal to the difference between the radius vectors at the initial 
and final instants: ds = dr. T h e velocity ν may therefore be 
written 

V = dr/dt, 

and is thus the time derivative of the radius vector of the moving 
particle. Since the components of the radius vector r are the 
coordinates x, y, z, the components of the velocity along these 
axes are the derivatives 

Vj. = dx/dt, Vy = dyldt, v^ = dzldt. 

T h e velocity, like the position, is a fundamental quanti ty 

r from the origin to the position of the particle. 
T h e motion of a particle is described by its velocity. In uniform 

motion, the velocity is defined simply as the distance t raversed 
by the particle in unit t ime. General ly , w^hen the motion is not 
uniform and varies in direction, the particle velocity must be 
defined as a vector equal to the vector of an infinitesimal displace
ment ds of the particle divided by the corresponding infinitesimal 
time interval dt. Denot ing the velocity vector by v, we therefore 
have 

V = dsldt. 

T h e direction of the vector ν is the same as that of ds; that is, 
the velocity at any instant is along the tangent to the path of the 
particle in the direction of motion. 
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§3] M O M E N T U M 5 

describing the state of motion of a particle. T h e state of the par
ticle is therefore defined by six quantit ies: three coordinates and 
three velocity components . 

T h e relation be tween the velocities ν and v' of the same particle 
in two different frames of reference Κ and K' may be determined 
as follows. If in a time dt the particle moves an amount ds relative 
to the frame K, and the frame Κ moves an amount dS relative to 
the frame Κ', the vector addition rule shows that the displace
ment of the particle relative to the frame K' is ds' = ds-^dS. 
Dividing both sides by the t ime interval dt and denoting the 
velocity of the frame A'' relative to Κ by V, we find 

v' = v -hV. 

This formula relating the velocities of a given particle in diflFerent 
frames of reference is called the velocity addition rule. 

At first sight the velocity addition rule appears obvious , but 
in fact it depends on the tacitly made assumption that the passage 
of time is absolute. W e have assumed that the time interval during 
which the particle moves by an amount ds in the frame Κ is equal 
to the time interval during which it moves by ds' inK'. In reality, 
this assumption proves to be not strictly correct , but the conse
quences of the non-absoluteness of t ime begin to appear only at 
very high velocities, comparable with that of light. In particular, 
the velocity addition rule is not obeyed at such velocities. In 
what follows we shall consider only velocities so small that the 
assumption of absolute time is quite justified. 

T h e mechanics based on the assumption that t ime is absolute 
is called Newtonian or classical mechanics, and we shall here 
discuss only this mechanics . Its fundamental laws were stated 
by Newton in his Principia (1687). 

§3. Momentum 

In free motion of a particle, i.e. when it does not interact with 
other bodies, its velocity remains constant in any inertial frame 
of reference. If particles interact with one another , however , their 
velocities will vary with t ime; but the changes in the velocities 
of interacting particles are not completely independent of one 
another. In order to ascertain the nature of the relation be tween 
them, we define a closed system —a. group of particles which 
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6 PARTICLE MECHANICS [l 

interact with one another but not with surrounding bodies. F o r a 
closed system there exist a number of quantities related to the 
velocities which do not vary with time. These quantities naturally 
play a particularly important part in mechanics . 

One of these invariant or conserved quantities is called the total 
momentum of the system. It is the vector sum of the momenta 
of each of the particles forming a closed system. T h e momentum 
of a single particle is simply proportional to its velocity. T h e 
proportionality coefficient is a constant for any given particle and 
is called its mass. Denot ing the particle momentum vector by 
ρ and the mass by m, we can write 

p = mv, 

where ν is the velocity of the particle. T h e sum of the vectors 
ρ over all particles in the closed system is the total momentum 
of the system: 

Ρ = Pi + Ρ2 + * · * = ^iVi - \ -m2\2~^ · · s 

where the suffixes label the individual particles and the sum 
contains as many terms as there are particles in the system. This 
quantity is constant in t ime: 

Ρ = constant . 

Thus the total momentum of a closed system is conserved. 
This is the law of conservation of momentum. Since the momen
tum is a vector, the law of conservation of momentum separates 
into three laws expressing the constancy in time of the three 
components of the total momentum. 

T h e law of conservat ion of momentum involves a new quanti ty, 
the mass of a particle. By means of this law, we can determine 
the ratios of particle masses . F o r let us imagine a collision 
be tween two particles of masses m^ and m2, and let Vi and V2 
denote their velocities before the collision, v / and Vg' their 
velocities after the collision. T h e n the law of conservat ion of 
momentum shows that 

m i V i - h m 2 V 2 = mi\i -\-m2y2!-
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§4] MOTION U N D E R REACTIVE FORCES 7 

'^'/////// 

F I G . 2 . 

If Avi and Avg are the changes in the velocities of the two 
particles, this relation may be written as 

miAvi -f mgAvs = 0, 

whence 

Av2 = — (mi/m2)Avi. 

T h u s the changes in velocity of two interacting particles are 
inversely proportional to their masses . Using this relation, we 
can find the ratio of the masses of the particles from the changes 
in their velocities. We must therefore arbitrarily take the mass of 
some particular body as unity and express the masses of all other 
bodies in terms of it. This unit of mass in physics is usually taken 
to be the gram (see §8). 

§4. Motion under reactive forces 
T h e law of conservat ion of momentum is one of the funda

mental laws of Na tu re and plays a part in many phenomena. In 
particular, it accounts for motion under reactive forces. 

W e shall show how the velocity of a rocket may be found as a 
function of its varying mass. Let the velocity of the rocket relative 
to the Earth at some instant / be ν and its mass M. At this instant, 
let the rocket begin to emit exhaust gases whose velocity relative 
to the rocket is u. In a time dt the mass of the rocket decreases 
to M-\-dM, where —dM is the mass of the gas emitted, and the 
velocity increases to v-\-dv. N o w let us equate the momenta of 
the system consisting of the rocket and the exhaust gases at 
times / and t-\-dt. T h e initial momentum is evidently Mv. T h e 
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8 PARTICLE MECHANICS [l 

momentum of the rocket at time t-l·dt is (M-\-dM){v-l· dv) 
(dM being negative) and the momentum of the exhaust gas is 
—dM(v — u), since the velocity of the gas relative to the Ear th 
is clearly v — u (Fig. 2). T h e momenta at these two times must be 
equal, by the law of conservat ion of momentum: 

Mv = {M-\- dM){v + dv) - dM(v - w), 

whence , neglecting the second-order small quantity dMdv, we 
obtain 

Mdv-^udM = Q 

or 

dMlM = -dvlu. 

We shall suppose that the gas outflow velocity does not vary 
with time. Then the last equation may be written 

dXogeM = — d{vlü), 

and therefore 

logeM + vju = constant . 

T h e value of the constant is given by the condition that the mass 
of the rocket is Mo at the beginning of its motion (i.e. when ν = 0), 
so that 

\OgeM-\-vlu = logeMo, 

whence we have finally 

v = u l oge (Mo/M) . 

This formula gives the velocity of the rocket as a function of its 
varying mass. 

§5. Centre of mass 

T h e law of conservation of momentum is related to an impor
tant property of mass , the law of conservation of mass. In order 
to unders tand the meaning of this law, let us consider the point 
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§5] CENTRE OF MASS 9 

m i H - m 2 + · · · 

where Γ Ι , r g , . . . are the radius vectors of the individual particles. 
T h e centre of mass has the noteworthy property of moving 

with constant velocity, whereas the individual particles forming 
the closed system may move with velocities which vary with 
time. F o r the velocity of the centre of mass is 

y m^dTjdt^m2dY2¡dt-\- · · · 
dt m i + m2 + · · · 

But dvildt is the velocity of the first particle, dY2ldt that of the 
second particle, and so on. Denot ing these by Vi , V g , . . . , we have 

m i V i H - m 2 V 2 + - · · 

m i + m2 + · · · 

T h e numerator is the total momentum of the system, which we 
have denoted by P, and we therefore have finally 

V = P /M, 

where Μ is the total mass of the particles: Μ = m^-^m2^ . 
Since the total momentum of the system is conserved, the velocity 
of the centre of mass is constant in time. 

called the centre of mass of a closed system of particles. T h e 
coordinates of the centre of mass are the mean values of the 
coordinates of the particles, the coordinate of each particle being 
counted as many times as its mass exceeds the unit mass . Tha t 
is, if ACi ,X2,-- . , denote the χ coordinates of particles having 
masses m i , ^ 2 , . . . , then the χ coordinate of the centre of mass is 
determined by the formula 

y m^X2+m2X2-^ 

m i -hm2H- · · · 

Similar formulae may be written for the y and ζ coordinates . 
These formulae can be put in a single vector form as an expres
sion for the radius vector R of the centre of mass: 

m i r i + m 2 r 2 + - · · 
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10 PARTICLE MECHANICS [l 

Writing this formula as 

P = M V , 

we see that the total momentum of the system, the velocity of its 
centre of mass and the total mass of the particles in the system 
are related in the same way as the momentum, velocity and mass 
of a single particle. W e can regard the total momentum of the 
system as the momentum of a single particle at the centre of 
mass of the system, with a mass equal to the total mass of the 
particles in the system. T h e velocity of the centre of mass may 
be regarded as the velocity of the system of particles as a whole, 
and the sum of the individual masses appears as the mass of the 
whole system. 

Thus we see that the mass of a composi te body is equal to the 
sum of the masses of its parts . This is a very familiar assert ion 
and might appear to be self-evident; but it is in fact by no means 
trivial and represents a physical law which follows from the law 
of conservation of momentum. 

Since the velocity of the centre of mass of a closed system of 
particles is constant in t ime, a frame of reference in which the 
centre of mass is fixed is an inertial frame, called the centre-of-
mass frame. T h e total momentum of a closed system of particles 
is obviously zero in this frame. T h e description of phenomena in 
this frame of reference eliminates complications arising from the 
motion of the system as a whole, and demonst ra tes more clearly 
the propert ies of the internal processes occurring within the 
system. F o r this reason the centre-of-mass frame is frequently 
used in physics. 

§6. Acceleration 
F o r a particle moving in a general manner the velocity varies 

continually in both magnitude and direction. Let the velocity 
change by d\ in a time dt. If the change per unit t ime is taken we 
have the acceleration vector of the particle, denoted here by w: 

w = d\¡dt. 

Thus the acceleration determines the change in the velocity of 
the particle and is equal to the time derivative of the velocity. 
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§6] ACCELERATION 11 

If the direction of the velocity is constant , i.e. the particle 
moves in a straight line, then the accelerat ion is along that line 
and is clearly 

w = dvldt. 

I t is also easy to determine the acceleration when the velocity 
remains constant in magnitude but varies in direction. This case 
occurs when a particle moves uniformly in a circle. 

F I G . 3 . 

Let the velocity of the particle at some instant be ν (Fig. 3). 
We mark ν from a point C on an auxiliary diagram (Fig. 4). When 
the particle moves uniformly in a circle, the end of the vector 
V (the point A) also moves uniformly in a circle of radius ν equal 
to the magnitude of the velocity. I t is clear that the velocity of 
A will be equal to the acceleration of the original particle P , since 
the motion of ̂ 4 in a time dt is d\ and its velocity is therefore d\ldt. 
This velocity is tangential to the circle round C and is perpen
dicular to v; in the diagram it is shown by w. If we draw the vector 
w at the point Ρ it will obviously be directed towards the centre 
O of the circle. 

F I G . 4 . 
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12 PARTICLE MECHANICS [l 

Thus the acceleration of a particle moving uniformly in a 
circle is tow^ards the centre of the circle, i.e. at right angles to the 
velocity. 

Let us nov^ determine the magnitude of the accelerat ion w. 
T o do so , we must find the velocity of the point A moving in a 
circle of radius v. When Ρ moves once round the circle about O, 
in a t ime 7 , say, the point A t raverses the circle about C , a 
distance 2πν, T h e velocity of A is therefore 

w = ΙπνίΤ. 

Substituting the period Τ = 2πΗν, where r is the radius of the 
path of the particle P , we obtain finally 

w = v^lr. 

Thus , if the velocity varies only in magnitude, the accelerat ion 
is parallel to the velocity; if the velocity varies only in direction, 
the acceleration and velocity vectors are mutually perpendicular. 

In general, when the velocity varies in both magnitude and 
direction, the acceleration has two components , one parallel to 
the velocity and one perpendicular to it. T h e first component , 
called the tangential component , is equal to the t ime derivative 
of the magnitude of the velocity: 

Wt = dvldt. 

T h e second component , w„, is called the normal component of the 
acceleration. I t is proportional to the square of the velocity of the 
particle and inversely proportional to the radius of curvature of 
the path at the point considered. 

§7. Force 
If a particle is in free motion, i.e. does not interact with sur

rounding bodies , its momentum is conserved. If, on the o ther 
hand, the particle interacts with surrounding bodies , then its 
momentum varies with t ime. W e can therefore regard the change 
in momentum of a particle as a measure of the action of sur
rounding bodies on it. T h e greater the change (per unit t ime), the 
stronger the action. I t is therefore reasonable to take the t ime 
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§7] FORCE 13 

derivative of the momentum vector of the particle in order to 
define this action. T h e time derivative is called the force on the 
particle. 

This definition describes one aspect of the interaction: it 
concerns the extent of the " r eac t i on" of the particle to the action 
of surrounding bodies on it. Converse ly , by studying the inter
action of the particle with surrounding bodies , we can relate the 
strength of this interaction to quantit ies describing the state of the 
particle and that of the surrounding bodies. 

T h e forces of interaction be tween particles depend (in classical 
mechanics) only on their position. In o ther words , the forces 
acting be tween particles depend only on the distances be tween 
them and not on their velocities. 

T h e manner in which the forces depend on the distances 
between the particles can in many cases be established by an 
examination of the physical phenomena underlying the interaction 
be tween particles. 

Let F denote the force acting on a given particle, expressed as 
a function of its coordinates and of quantit ies representing the 
propert ies and positions of the surrounding bodies. W e can then 
write down an equation be tween two expressions for the force: 
F , and the change in the momentum ρ of the particle per unit t ime, 

dpidt = F. 

This is called the equation of motion of the particle. 
Since ρ = mv, the equation of motion of a particle may also 

be written 

m d\ldt = F. 

Thus the force acting on a particle is equal to the product of 
its acceleration and its mass . This is Newton's second law. 

It should be emphasised, however , that this law acquires a 
specific significance only when F is known as a function of the 
particle coordinates . In that case , i.e. if the form of the function 
F is known, the equation of motion enables us , in principle, to 
determine the velocity and coordinates of the particle as functions 
of t ime; that is, to find its path. In addition to the form of the func
tion F (i.e. the law of interaction be tween the particle and 
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14 PARTICLE MECHANICS [l 

surrounding bodies), the initial conditions must be given, that is , 
the position and velocity of the particle at some instant taken as 
the initial instant. Since the equation of motion determines the 
increment of velocity of the particle in any time interval dt 
{d\ = F dtim), and the velocity gives the change in spatial posi
tion of the particle (dv = \ dt), it is clear that specifying the initial 
position and initial velocity of the particle is in fact sufficient to 
determine its further motion completely. This is the significance 
of the s tatement made in §2 that the mechanical state of a particle 
is defined by its coordinates and velocity. 

T h e equation of motion is a vector equation, and may therefore 
be v^ritten as three equations relating the components of accelera
tion and force: 

m dvjdt = Fj., m dvjdt = Fy, m dvjdt = F^. 

Let us now consider a closed system of particles. As we 
know, the sum of the momenta of such particles is conserved: 

Pi + p2 + · · · = constant , 

where p, is the momentum of the ith particle. Diflferentiation of 
this equation with respect to time gives 

Since 

dpildt = ¥ i . 

where F, is the force on the ith particle, we have 

Fi + F 2 + - - - = 0. 

T h u s the sum of all the forces in a closed system is zero. 
In particular, if the closed system contains only two bodies , 

the force exerted by one body on the other must be equal in 
magnitude and opposite in direction to the force which the latter 
body exerts on the former. This is called the law of action and 
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§8] D I M E N S I O N S O F P H Y S I C A L Q U A N T I T I E S 15 

F. F 
Ml 0 • • 0M2 

F I G . 5 . 

reaction or Newton's third law. Since, in this case , there is only 
one distinctive direction, namely that of the Hne joining the 
bodies (or particles), the forces Fi and F2 must act along this Une 
(see Fig. 5, where and Μ2 denote the two particles). 

§8. Dimensions of physical quantities 
All physical quantities are measured in certain units. T o 

measure a quanti ty is to determine its ratio to another quanti ty 
of the same kind which is arbitrarily taken as the unit. 

In principle, any unit may be chosen for each physical quanti ty, 
but by using the relations be tween different quantit ies it is pos
sible to define a limited number of arbitrary units for certain 
quantities taken as fundamental , and to construct for the other 
quantities units which are related to the fundamental units. T h e s e 
are called derived units. 

Length, t ime and mass are taken as the fundamental quantit ies 
in physics. 

T h e unit of length in physics is the cent imetre (cm), equal to 
one-hundredth of the metre , which is now defined as equal to 
1 650763-73 wavelengths of the light corresponding to a partic
ular (orange) line in the spectrum of the gas krypton. 

T h e metre was originally defined as one ten-millionth of a 
quadrant of the meridian through Paris , and the s tandard metre 
was constructed from measurements made in 1792. Since it was 
extremely difficult to reproduce the s tandard metre on the basis 
of its " n a t u r a l " definition, the metre was later defined by agree
ment as the length of a particular s t a n d a r d - a plat inum-ir idium 
bar preserved at the Internat ional Bureau of Weights and 
Measures in Paris. This definition of the metre as a "d i s tance 
be tween l ines" has also now been abandoned , and the " l igh t" 
metre described above is used. In consequence , the unit of length 
is again a natural and indestructible measure of length, and, 
moreover , allows a hundredfold increase in the accuracy of 
reproduction of the s tandard metre . 

T h e following units are used in measuring short dis tances: 
the micron ( 1 μ = 10"^ cm), the millimicron ( l m ^ = lO'^ 'cm), 
the angstrom (1 Á = 1 c m ) and the fermi (10~^^ cm). 

Pure Mathematical Physics



16 PARTICLE MECHANICS [l 

In as t ronomy, distances are measured in terms of the light-
year, the distance t raversed by light in one year, equal to 
9-46 X 1017 cm. ^ distance of 3-25 light-years or 3 - 0 8 X lO^^cm 
is called a par sec, it is the distance at which the diameter of the 
Ear th ' s orbit subtends an angle of one second of arc. 

T ime in physics is measured in seconds. T h e second (sec) is 
now defined as a certain fraction of a particular tropical year 
(1900). T h e tropical year is the t ime be tween successive passages 
of the Sun through the vernal equinox. T h e year (1900) is 
specified because the length of the tropical year is not cons tant 
but decreases by about 0-5 sec per century. 

T h e second was originally defined as a fraction (1/86 400) of 
the solar day, but the Ear th ' s daily rotation is not uniform and the 
length of the day is not constant . T h e relative ñuctuat ions of the 
length of the day are about 1 0 " ^ which is too great for the day 
to be used as a basis for the definition of the unit of t ime, in 
terms of present-day technology. T h e relative fluctuations in the 
length of the tropical year are smaller, but the definition of the 
second on the basis of the Ear th ' s revolution round the Sun 
cannot be regarded as entirely satisfactory, since it does not 
allow a " s t a n d a r d " unit of time to be reproduced with suflScient 
accuracy. This difficulty disappears only if the definition of the 
second is based not on the motion of the Ear th but on the periodic 
motions occurring in a toms. T h e second then becomes a natural 
physical unit of t ime just as the "l ight" cent imetre is a natural 
unit of length. 

Mass in physics is measured in grams, as already stated. O n e 
gram (g) is one- thousandth of the mass of a s tandard kilogram pre
served at the International Bureau of Weights and Measures in 
Paris. 

T h e mass of one kilogram was originally defined as the mass 
of one cubic decimetre of water at 4°C, i.e. the tempera ture at 
which water has its maximum density. It was , however , impos
sible to maintain this definition, as with the original definition of 
the metre , owing to the increasing accuracy of measurements ; 
if the original definitions were retained it would be necessary to 
keep changing the fundamental s tandards. Modern results show 
that 1 cm^ of distilled water at 4°C weighs not 1 g but 0-999 972 g. 

T h e definition of the kilogram as the mass of a s tandard, how
ever, suffers from the same defects as the definition of the met re 
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as a "dis tance be tween l ines". T h e best procedure would be to 
define the gram not in terms of the mass of a s tandard kilogram 
but in terms of the mass of an atomic nucleus , such as the proton. 

Let us now see how derived units are const ructed, taking a 
few examples. 

As the unit of velocity we could take any arbitrary velocity 
(for instance, the mean velocity of the Ear th round the Sun, or 
the velocity of Hght), and refer all o ther velocities to this as the 
unit; but we can also use the definition of velocity as the ratio of 
distance to time and take as the unit of velocity the velocity at 
which a distance of one cent imetre is t raversed in one second. 
This velocity is denoted by 1 cm/sec . T h e symbol cm/sec is 
called the dimensions of velocity in te rms of the fundamental 
units, the centimetre for length and the second for t ime. T h e 
dimensions of velocity are writ ten 

[v] = cm/sec . 

T h e situation is similar for acceleration. T h e unit of accelera
tion could be taken to be any accelerat ion (for ins tance, that of 
a freely falling body) , but we can use the definition of accelerat ion 
as the change of velocity per unit t ime, and take as the unit of 
acceleration the acceleration such that the velocity changes by 
1 cm/sec in one second. T h e notat ion for this unit is 1 cm/sec^, 
and the symbol crh/sec^ denotes the dimensions of acceleration, 
writ ten as 

[w] = cm/sec^ 

Let us now determine the dimensions of force and establish 
the unit of force. T o do so , we use the definition of force as the 
product of mass and acceleration. Using square brackets to 
denote the dimensions of any physical quanti ty, we obtain for 
the dimensions of force the expression 

[F] = [m][w] = g.cm/sec^. 

As the unit of force we can take 1 g.cm/sec^, which is called one 
dyne. This is the force which gives a mass of 1 g an accelerat ion 
of 1 cm/sec^ 
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Thus , by using the relations be tween various quanti t ies , we 
can choose units for all physical quantities by starting from a 
small number of fundamental quantities whose units are chosen 
arbitrarily. T h e system of physical units with the cent imetre , 
gram and second as the fundamental units of mass , length and 
time is called the physical or CGS system of units. 

It should not be thought, however , that the use of jus t three 
arbitrary fundamental units in this system has any deep physical 
significance. It arises only from the practical convenience of the 
system constructed from these units. In principle, a system of 
units could be constructed with any number of arbitrarily chosen 
units (see §22). 

Operat ions with dimensions are carried out as if the latter 
were ordinary algebraic quantit ies, i.e. they are subject to the 
same operat ions as numbers . T h e dimensions of both sides of 
any equation containing different physical quantities must ob
viously be the same. This fact should be remembered in checking 
formulae. 

It is often known from physical considerat ions that a particular 
physical quantity can depend only on certain other quantit ies. 
In many cases dimensional arguments alone suffice for the nature 
of the dependence to be determined. W e shall later see examples 
of this. 

Besides the C G S system of units , other systems are frequently 
used, in which the fundamental units of mass and length are 
greater than the gram and the centimetre. T h e international 
system of units (SI) is based on the metre , kilogram and second 
as units of length, mass and time. T h e unit of force in this sys tem 
is called the newton (N) : 

1 N = 1 k g . m / s e c 2 = lO^dyn. 

In engineering calculations, force is usually measured in units 
of kilogram-force (kgf). This is the force with which a mass of 
1 kg is at tracted to the Ear th at sea level in latitude 45°. I ts value is 

l k g f = 9 - 8 x l 0 ^ d y n = 9 -8N 

(more precisely, 980 665 dyn). 
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Hence 

§9. Motion in a uniform field 

If a particle is subject to a definite force at every point in 
space, these forces as a whole are called a force field. In general , 
the field forces may vary from one point to another in space and 
may also depend on time. 

Let us consider the simple case of the motion of a particle in a 
uniform and constant field, where the field forces have the same 
magnitude and direction everywhere and are independent of 
t ime, for example the Ear th ' s gravitational field in regions small 
compared with its radius. 

F r o m the equation of motion of a particle, 

m d\ldt = F , 

we have when F is constant 

v = ( F / m ) r + V o , 

where Vo is the initial velocity of the particle. T h u s in a uniform 
and constant field the velocity is a linear function of time. 

T h e expression obtained for ν shows that the particle moves 
in the plane defined by the force vector F and the initial velocity 
vector Vo. Let us take this as the xy p lane, and the y axis in the 
direction of the force F. T h e equation for the velocity ν of the 
particle gives two equations for the velocity components Vj. 
and Vy'. 

Vy=(Flm)t-^VyO, Vj,= Vj,0, 

where Vj.o and Vyo are the initial values of the velocity components . 
Since the velocity components are the t ime derivatives of the 

corresponding coordinates of the particle, we can write the last 
two equations as 

dyldt
 =

 (Flm)t
 +

 Vyo, dx/dt
 =

 v^^o-

y = {Fl2my-^Vyot-^yo, 
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origin at the point where the particle is at that instant, we have 
Xo = yo = 0. Finally, denoting the quanti ty Vj.o, which is now the 
initial magnitude of the velocity, by VQ simply, we have 

y = {Fl2m)t\ χ=υ^ί. 

Elimination of t gives 

y = {Fl2mv^^)x', 

the equation of a parabola (Fig. 6). T h u s a particle in a uniform 
field describes a parabola. 

§ 10. Work and potential energy 

Let us consider the motion of a particle in a force field F. If 
the particle moves an infinitesimal distance ds under the action 
of the force F, the quantity 

dA = F ds cos Ö, 

where θ is the angle between the vectors F and ds, is called the 
work done by the force F over the distance ds. T h e product of 
the magnitudes of two vectors a and b and the cosine of the angle 
between them is called the scalar product of these vectors and 
denoted by a.b. The work may therefore be defined as the scalar 
product of the force vector and the particle displacement vector : 

dA = F.ds. 

where jco and yo are the initial values of the coordinates of the 
particle. These expressions determine the path of the part icle. 
They can be simplified if t ime is measured from the instant at 
which the velocity component ν y is zero; then Vyo = 0. Taking the 
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This expression may also be written 

dA = F,ds, 

where is the component of the force F in the direction of 
motion of the particle. 

In order to determine the work done by field forces over a 
finite path of the particle, it is necessary to divide this path into 
infinitesimal intervals ds, find the work for each such interval, and 
add the results. T h e sum gives the work done by the field forces 
over the whole path. 

F r o m the definition of work it follows that a force p e φ e n d i c u -
lar to the path does no work. In particular, in uniform motion of a 
particle in a circle the work done by forces is zero. 

A constant force field, i.e. one independent of t ime, has the 
following remarkable property: if a particle moves along a closed 
path in such a field, so as to return to its original position, then the 
work done by the field forces is zero. 

F r o m this property there follows another result: the work done 
by the field forces in moving a particle from one position to an
other is independent of the path taken, and is determined only by 
the initial and final points. F o r let us consider two points 1 and 
2 joined by two curves a and b (Fig. 7), and suppose that the 
particle moves from point 1 to point 2 along curve a and then 
from point 2 back to point 1 along curve b. T h e total work done 
by the field forces during this process is zero. Denot ing the work 
b y / i , we can write 

^ l a 2 ~^^2bl ~ 0. 

When the direction of motion is reversed, the sign of the work is 
obviously changed, and thus we have 

102? 
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i.e. the work is independent of the form of the curve joining the 
initial and final points 1 and 2. 

Since the work done by the field forces is independent of the 
path taken and is determined only by the terminal points of the 
path, it is clearly a quantity of deep physical significance. It can 
be used to define an important proper ty of the force field. T o do 
so, we take any point O in space as the origin, and consider the 
work done by the field forces when the particle moves from O 
to any point P , denoting this work by —V. T h e quanti ty Í7, 
i.e. minus the work done in moving the particle from O to P , is 
called the potential energy of the particle at the point P. It is a 
function of the coordinates x, j , ζ of the point P\ 

U=U{x,y,z). 

T h e work A12 done by the field forces when the particle moves 
between any points 1 and 2 is 

A,2=U,-U2, 

where Ui and U2 are the values of the potential energy at the two 
points. T h e work done is equal to the difference of the potential 
energies at the initial and final points of the path. 

Let us consider two points Ρ and P' an infinitesimal distance 
apart. T h e work done by the field forces when the particle moves 
from Ρ to P' is —dU. This work is also equal to F.rfs, where ds is 
the vector from Ρ to P'; it has been shown in §2 that the vector 
ds is equal to the difference dr of the radius vectors of P' and P. 
Thus we obtain the equation 

F.dr = -dU. 

This relation be tween the force and the potential energy is one of 
the fundamental relations of mechanics. 

Writing F.dr = F.ds = Fgds, we can put this relation in the form 

Fs = -dUlds, 

This means that the component of the force in any direction is 
obtained by dividing the infinitesimal change dU in the potential 
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energy over an infinitesimal interval in that direction by the length 
ds of the interval. T h e quanti ty dUIds is called the derivative of 
U in the direction s. 

T o explain these relat ions, let us determine the potential energy 
in a constant uniform field. W e take the direction of the field 
force F as the ζ axis. Then F.dr = Fdz\ equating this to the 
change in the potential energy, we have —dU = Fdz, whence 

U = —Fz-\- constant . 

W e see that the potential energy is defined only to within an 
arbitrary constant . This is a general result related to the arbi
trariness of the choice of the original point O in the field from 
which the work done on the particle is measured. It is usual to 
choose the arbitrary constant in the expression for U so that the 
potential energy of the particle is zero when it is at an infinite 
distance from other bodies. 

F r o m the relations be tween the force components and the 
potential energy we can deduce the direction of the force. If the 
potential energy increases in a given direction (dUldt > 0), the 
component of the force in that direction is negative, i.e. the force 
is in the direction of decreasing potential energy. F o r c e always 
acts in the direction in which potential energy decreases . 

Since the derivative vanishes at points where the function has a 
maximum or minimum, the force is zero at points of maximum or 
minimum potential energy. 

§11. The law of conservation of energy 

T h e fact that the work done by the forces of a constant field 
when a particle moves from one point to another is independent 
of the shape of the path along which the particle moves leads to 
an extremely important relationship, the law of conservat ion of 
energy. 

In order to derive this, we recall that the force F acting on the 
particle is 

F = md\ldt. 

Since the component of acceleration in the direction of the motion 
is dvldt, the force component in this direction is 

Fs = m dvldt. 
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dA = Fsds = mvdv, 

or 

dA = diimv'). 

Thus the work done by the force is equal to the increase in imi^. 
This quantity is called the kinetic energy of the particle. 

T h e work is also equal to the decrease in potential energy: 
dA = —dU. W e can therefore write 

-dU = diimv"), 

i.e. 

c/(f/ + W ) = 0. 

Denot ing the sum by E , we hence obtain 

Ε = imt^ -\-U = constant . 

Thus the sum of the kinetic energy of the particle, which 
depends only on its velocity, and the potential energy, which 
depends only on its coordinates , is constant during the motion 
of the particle. This sum is called the total energy or simply the 
energy of the particle, and the relationship derived above is 
called the law of conservation of energy. 

T h e force field in which the particle moves is generated by 
various other bodies. If the field is constant , these bodies must 
be at rest. T h u s we have derived the law of conservat ion of energy 
in the simple case where one particle moves and all the other 
bodies with which it interacts are at rest. But the law of conserva
tion of energy can also be stated in the general case where more 
than one particle is moving. If these particles form a closed 
system, a law of conservat ion of energy is again valid which 
states that the sum of the kinetic energies of all the particles 

Let us now determine the work done by this force over an 
infinitesimal distance ds = υ dt: 
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separately and their mutual potential energy does not vary with 
time, i.e. 

E=-imiV,^-i-im2V2^-h^ · · 4- ί / ( Γ ι , Γ2, . . . ) , 

where is the mass of the ith part icle, V/ its velocity and U 
the potential energy of interaction of the part icles, which depends 
on their radius vectors r̂ . 

T h e function U is related to the forces acting on each particle 
in the same way as for a single particle in an external field. In 
determining the force Fj acting on the ith particle we must con
sider the change in the potential energy U in an infinitesimal 
displacement dvi of this particle, the posit ions of all the other 
particles remaining unchanged. T h e work Fi.dVi done on the 
particle in such a displacement is equal to the corresponding 
decrease in the potential energy. 

T h e law of conservat ion of energy is valid for any closed 
system and, like the law of conservat ion of momentum, is one of 
the most important laws of mechanics . 

T h e kinetic energy is an essentially positive quanti ty. T h e 
potential energy of interaction of particles may be either posit ive 
or negative. If the potential energy of two particles is so defined 
that it is zero when the particles are at a great dis tance apart , 
its sign depends on whether the interaction be tween the particles 
is at tractive or repulsive. Since the forces acting on particles 
are always in the direction of decreasing potential energy, the 
approach of attracting particles leads to a decrease in potential 
energy, which is therefore negative. T h e potential energy of 
repelling particles, on the o ther hand, is positive. 

Energy, and also work, have the dimensions 

[E] = [m]^ = g.cm2/sec2. 

T h e unit of energy in the C G S system is therefore 1 g.cm^/sec^, 
which is called the erg. It is the work done by a force of 1 dyn 
acting through 1 cm. 

In the SI system a larger unit of energy, the joule (J), is used, 
equal to the work done by a force of 1 Ν acting through 1 m: 

1 J = 1 N . m = lO^erg. 
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If the unit of force is the kilogram-force, the corresponding 
unit of energy is the kilogram-metre (kgf.m), equal to the work 
done by a force of 1 kgf acting through 1 m. It is related to the 
joule by 1 kgf.m = 9-8 J. 

Energy sources are described by the work done per unit t ime. 
This is called the power. T h e unit of power is the watt (W): 

1 W = 1 J /sec . 

T h e work done in one hour by an energy source of power 1 W is 
called a watt-hour (Wh). It is easy to see that 

l W h = 3 -6x103 J. 

§12. Internal energy 
As has been explained in §5, for the motion of a composi te 

system we can define the velocity of the system as a whole , 
namely the velocity of the centre of mass of the system. This 
means that the motion of the system may be regarded as con
sisting of two par ts : the motion of the system as a whole and the 
" in terna l" motion of the particles forming the sys tem relative 
to the centre of mass . Accordingly the energy Ε of the sys tem may 
be writ ten as the sum of the kinetic energy of the sys tem as a 
whole, which is i M F ^ (where Μ is the mass of the sys tem and V 
the velocity of its centre of mass) , and the internal energy Eint of 
the system, which comprises the kinetic energy of the internal mo
tion of the particles and the potential energy of their interaction: 

E = iMV'^E,,,. 

Although this formula is fairly obvious, we shall also give a 
direct derivation of it. T h e velocity of the ith particle, say, 
relative to a fixed frame of reference may be written as V i 4 - V , 
where V is the velocity of the centre of mass of the system and 
\i is the velocity of the particle relative to the centre of mass . 
T h e kinetic energy of the particle is 

imi{\i H- V) 2 = im^ -f imtVi" + m,-V . v^. 

On summation over all particles the first term from each such 
expression gives iMV^, where Μ = mi-fmgH . T h e sum of 
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the second terms gives the total kinetic energy of the internal 
motion in the system. T h e sum of the third te rms is zero , since 

m i V . V j -h m^S. V2 + · · · = V . ( m i V i Λ-γη^^ι + · · ·)5 

the expression in parentheses is the total momentum of the 
particles relative to the centre of mass of the system, which by 
definition is zero. Finally, adding the kinetic energy to the poten
tial energy of interaction of the part icles, we obtain the required 
formula. 

Using the law of conservat ion of energy, we can discuss the 
stability of a composi te body. T h e problem here is to ascertain 
the conditions in which the composi te body may spontaneously 
disintegrate into its component par ts . Let us consider , for 
example , the break-up of a composi te body into two par t s ; let 
the masses of the par ts be mj and mg, and let the velocities of 
the par ts in the centre-of-mass frame of the original composi te 
body be Vi and Vg. Then the law of conservat ion of energy in this 
frame is 

where £int is the internal energy of the original body and Ennt, 
Egint the internal energies of the two parts . Since the kinetic 
energy is always posit ive, it follows from the above relation that 

^int > Flint + ^ 2 ΐ η Ι · 

This is the condition for the body to be able to disintegrate into 
two par ts . If, on the other hand, the internal energy of the body is 
less than the sum of the internal energies of its component par t s , 
the body will be stable with respect to the disintegration. 

§13. Boundaries of the motion 
If the motion of a particle is constrained so that it can move 

only along a certain curve , the motion is said to have one degree 
of freedom or to be one-dimensional. O n e coordinate is then 
sufliicient to specify the position of the part icle; it may be taken, 
for example, as the distance along the curve from a point taken as 
origin. Let this coordinate be denoted by x. T h e potential energy 
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of a particle in one-dimensional motion is a function only of this 
one coordinate: U = U{x). 

According to the law of conservat ion of energy we have 

Ε = imv^ + i /( jc) = constant , 

and since the kinetic energy cannot take negative values the 
inequality 

U ^E 

must hold. This implies that the particle during its motion can 
occupy only points where the potential energy does not exceed 
the total energy. If these energies are equal, we have the equat ion 

U{x) = E , 

which determines the limiting posit ions of the particle. 

iU(x ) 

Some typical examples are the following. Let us first take a 
potential energy which, as a function of the coordinate x, has the 
form shown in Fig. 8. In order to find the boundar ies of the 
motion of a particle in such a force field, as functions of the total 
energy Ε of the particle, we draw a straight line U = Ε parallel 
to the X axis. This line intersects the curve of potential energy 
U = U(x) at two points , whose abscissae are denoted by jci and 
X2. If the motion is to be possible it is necessary that the potential 
energy should not exceed the total energy. This means that the 
motion of a particle with energy Ε can occur only be tween the 
points jci and jcg, and a particle of energy Ε cannot enter the 
regions right of X2 and left of Χχ. 
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A motion in which the particle remains in a finite region of 
space is called a finite motion; one in which the particle can go to 
any distance is called an infinite motion. 

T h e region of finite motions depends , of course , on the energy; 
in the example considered here , it decreases with decreasing 
energy and shrinks to a single point XQ when Ε = Umm-

At the points Xi and X2 the potential energy is equal to the total 
energy, and therefore at these points the kinetic energy and hence 
the particle velocity are zero. At the point XQ the potential energy 
is a minimum, and the kinetic energy and velocity have their 
maximum values. Since the force F is related to the potential 
energy F = —dUldx, it is negative be tween XQ and X2, and positive 
between XQ and jcj. This means that be tween x^ and X2 the force is 
in the direction of decreasing x, i.e. to the left, and be tween XQ and 
jci it is to the right. Consequent ly , if the particle begins to move 
from the point JCi, where its velocity is zero , the force to the right 
will gradually accelerate it to a maximum velocity at the point XQ. 
As the particle continues to move from x^ to X2 under the force 
which is now to the left, it will slow down until it comes to rest 
at X2. It will then begin to move back from X2 to XQ. This type of 
motion will continue indefinitely. T h u s the particle executes a 
periodic motion with a period equal to twice the time for the 
particle to go from jCi to Χ2· 

At the point XQ the potential energy is a minimum and the 
derivative of U with respect to χ is zero ; at this point the force is 
therefore zero , and the point XQ is consequent ly a position of 
equilibrium of the particle. This position is evidently one of 
stable equilibrium, since in this case a depar ture of the particle 
from the equilibrium position causes a force which tends to 
return the particle to the equilibrium position. This proper ty 
exists only for minima and not for maxima of the potential 
energy, although at the latter the force is likewise zero . If a par
ticle is moved in either direction from a point of maximum poten
tial energy, the resulting force in either case acts away from this 
point, and points where the potential energy reaches a maximum 
are therefore positions of unstable equilibrium. 

Let us now consider the motion of a particle in a more complex 
field whose potential-energy curve has the form shown in Fig. 9. 
This curve has both a minimum and a maximum. If the particle 
has energy E, it can move in such a field in two regions: region I 
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between the points JCi and JCg, and region I I I to the right of the 
point x¿ (at these points the potential energy is equal to the total 
energy). T h e motion in the former region is of the same type as in 
the previous example , and is oscillatory. T h e motion in region I I I , 
however , is infinite, since the particle may move to any dis tance 
to the right of the point X3. If the particle begins its motion at the 
point JCg, where its velocity is zero , it will continually be accele
rated by the force to the right; at infinity, the potential energy is 
zero and the particle velocity reaches the value Voo = V ( 2 m £ ) . 

U(x) 

If, on the other hand, the particle moves from infinity to the point 
JC3, its velocity will gradually decrease and vanish at JC3, where the 
particle will turn round and go back to infinity. It cannot pene
trate into region I, since this is prevented by the forbidden region 
II lying be tween X2 and X3. This region also prevents a particle 
that is executing oscillations be tween Xi and Xz from entering 
region I I I , where motion with energy Ε is also possible. T h e for
bidden region is called a potential barrier, and region I is called a 
potential well. A s the particle energy increases in this case , the 
width of the barrier diminishes and for Ε ^ U^ax it does not exist. 
T h e region of oscillatory motion likewise disappears , and the 
motion of the particle becomes infinite. 

T h u s we see that the motion of a particle in a given force field 
may be either finite or infinite depending on the energy of the 
particle. 

This may be illustrated also by the example of motion in a field 
whose potential-energy curve has the form shown in Fig. 10. In 
this case positive energies correspond to infinite motion, and 
negative energies (i/min < F < 0) to finite motion. 
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Whenever the potential energy is zero at infinity, motion with 
negativ? energy will necessarily be finite, since at infinity the 
zero potential energy exceeds the total energy, and the particle 
therefore cannot go to infinity. 

§14. Elastic collisions 
T h e laws of conservat ion of energy and momentum can be 

used to establish relations between various quantit ies in collisions. 
In physics , collisions are processes of interaction be tween 

bodies in the broad sense of the word, and do not necessarily 
involve literal contact be tween the bodies . T h e colliding bodies 
are free when at an infinite distance apart. A s they pass they 
interact, and in consequence of this various processes may 
occur: the bodies may combine, may form new bodies or may 
undergo an elastic collision, in which the bodies move away after 
their approach, without any change in their internal state. 
Collisions in which a change occurs in the internal state of the 
bodies are said to be inelastic. 

Collisions be tween ordinary bodies under ordinary condit ions 
are almost always inelastic to some extent, if only because they are 
accompanied by some heating of the bodies , that is, by the con
version of part of their kinetic energy into heat. Never the less , the 
concept of elastic collisions is of great importance in physics , 
since such collisions are often involved in physical exper iments 
dealing with atomic phenomena. Ordinary collisions also may 
frequently be regarded as elastic to a sufficient approximation. 
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Let us consider an elastic collision be tween two particles of 
masses mj and mg; let their velocities before and after the collision 
be respectively V i , Vg ; v / , V g ' . We shall suppose that the particle 
ηΐ2 is at rest before the collision, i.e. Vg = 0. 

Since, in an elastic collision, the internal energies of the 
particles are unchanged, they can be ignored in applying the 
law of conservation of energy, i.e. they can be taken as zero. 
Since the particles are assumed not to interact before and after 
the collision, i.e. to be free, the law of conservat ion of energy 
amounts to the conservat ion of kinetic energy: 

where the common factor i has been omitted. 
T h e law of conservation of momentum is expressed by the 

vector equation 

m i V j == m i V i ' H - m 2 V 2 ' . 

A very simple case is that where the mass of the particle 
originally at rest is much greater than that of the incident particle, 
i.e. ηΐ2 > mj. T h e formula 

V 2 ' = (mi/msKvi-v/ ) 

shows that the velocity V 2 ' will then be very small. A similar 
conclusion may be drawn regarding the energy of this particle 
originally at rest, since the product m2V2''^ will be inversely 
proportional to the mass m g . H e n c e we deduce that the energy 
of the first (incident) particle is unchanged by the collision, and 
its velocity is therefore unchanged in magnitude. T h u s a collision 
between a light and a heavy particle can change only the direction 
of the velocity of the light particle, the magnitude of its velocity 
remaining constant . 

If the masses of the colliding particles are equal , the conserva
tion laws become 

Vi = V / + V 2 ' . 

V,^ = V,'^-^V2'^. 
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Let us next consider a head-on collision of two particles. After 
such a collision the two particles will move along the direction 
of the velocity of the incident particle. In this case we can replace 
the velocity vectors in the law of conservat ion of momen tum by 
their magnitudes: 

m¿V2 = m^{vi — Vi'). 

Using also the law of conservat ion of energy, according to which 

m2V2'^ = mi(vi^-Vi'^), 

we can express i; / and V2' in terms of v^. Dividing the second 
expression by the first gives 

V2' = Vi-\- Vi 

and therefore 

mt — m2 , 2mi 
rrii-r ηΐ2 ηι^-τ rrii 

T h e first (incident) particle will cont inue to move in the same 
direction or will move back in the opposi te direction, according 
as its mass m i is greater or less than the mass ηΐ2 of the particle 
originally at rest. If the masses m i and m g are equal , then Vi = 0 , 
V2 = V i , so that the particles as it were exchange velocities. If 
m2 > nil, then i ; / = —Vi and ^2' = 0. 

In the general case it is convenient to consider the collision in 
the centre-of-mass frame of the colliding particles. T h e n the total 

The first of these relations signifies that the vectors V j , v / and 
y2 form a triangle; the second shows that the triangle is right-
angled with hypotenuse Vi. T h u s two particles of equal mass 
diverge at right angles after the collision (Fig. 11). 
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T h e angle through which the velocities are turned is deter
mined not only by the laws of conservat ion of momentum and 
energy but also by the nature of the interaction be tween the 
particles and by their relative position in a collision. 

In order to ascertain how the velocities are changed in the 
original or laboratory frame of reference (in which one particle 
is at rest before the colusión, i.e. Vg = 0), we use the following 
graphical procedure . W e construct a vector O l equal to the 
velocity Vio of the first particle in the centre-of-mass frame 
(Fig. 13). This velocity is related to the velocity Vi of the same 
particle in the laboratory frame (which is also the relative 
velocity of the two particles) by Vjo = Vi — V, where 

^ ^ miVi + m2V2 ^ miVi 
mi + A7Z2 mi + m2 

is the velocity of the centre of mass. Subtraction gives 

_ mgVi 
"'̂ ' mi + m2* 

momentum of the particles is zero both before and after the 
collision. H e n c e , if the momenta of the first particle before and 
after the collision are ρ and p', those of the second particle will 
be—ρ and—p' respectively. 

Nex t , equating the sums of the kinetic energies of the part icles 
before and after the colusión, we see that p^ = p''^, i.e. the 
momenta of the particles are unchanged in magnitude. T h u s the 
only effect of the collision is to rotate the momenta of the par
ticles, changing their direction but not their magnitude. T h e 
velocities of the two particles are changed in the same manner , 
being rotated without change of magnitude and remaining 
opposite in direction, as shown in Fig. 12; the suffix zero to the 
velocities is used to indicate that they are measured in the 
centre-of-mass frame. 
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T h e velocity Vio' of the first particle after the collision is obtained 
by turning the velocity Vio through some angle Θ, i.e. it may be 
represented by any radius O Γ of the circle in Fig. 13. T o change 
to the laboratory frame of reference, we must add to all velocities 
the velocity V of the centre of mass. In Fig. 13 this is represented 
by AO. T h e vector A1 then gives the velocity Vj of the incident 
particle before the collision, and A I' is the required velocity of 
that particle after the collision. T h e velocity of the second particle 
may be found similarly. 

In Fig. 13 it is assumed that mj < mg, so that the point A lies 
within the circle. T h e v e c t o r / 4 Γ , i.e. the velocity v / , may have 
any direction. If mi > mg, however , A lies outside the circle 
(Fig. 14). In this case the angle φ be tween the velocities of the 
particle before and after the collision cannot exceed some maxi
mum value corresponding toAV being a tangent to the circle. T h e 

F I G . 1 4 . 
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side y 4 Γ of the triangle Al'O is then perpendicular to Ο Γ , and 

sin φπίΒχ = 0\ΊΑΟ = nhlrtii. 

We may also note that the velocity of the particle after the 
collision cannot be less than a certain minimum value, which is 
reached when the point Γ in Fig. 13 (or Fig. 14) is diametrically 
opposite to 1. This corresponds to a head-on collision of the 
particles, and the minimum value of the velocity is 

§15. Angular momentum 
Besides energy and momentum, another vector quanti ty called 

angular momentum is conserved for any closed system. This 
quantity is the sum of the angular momenta of the individual 
particles, defined as follows. 

Let a particle have momentum ρ and let its position relative to 
some arbitrary origin O be given by the radius vector r. T h e n the 
angular momentum L of the particle is defined as a vector whose 
magnitude is 

L = rp sin θ 

(where θ is the angle between ρ and r) and whose direction is 
p e φ e n d i c u l a r to the plane through the directions of ρ and r. T h e 
latter condition does not completely define the direction of L, 
since it may still be either ' ' u p " or " d o w n " . It is cus tomary to 
define the direction of L as follows: if a right-handed screw is 
imagined to turn from the direction of r towards p , it will advance 
in the direction of L (Fig. 15). 

F I G . 1 5 . 
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The quantity L may also be regarded in a more intuitive way if 
we note that the product r sin θ is the length hjj of the perpendic
ular from O to the line of the particle momentum (Fig. 16); this 
distance is often called the moment arm of the momentum rela
tive to O. T h e angular momentum of the particle is equal to the 
product of this arm and the magnitude of the momentum: 

L = php. 

This vector L is simply the vector product defined in vector 
algebra; the vector L constructed in the manner described from 
the vectors r and ρ is called the vector product of r and ρ and 
written 

or, smce ρ = mv, 

L = r x p 

L = mv X V. 

This formula determines the angular momentum of a single 
particle. T h e angular momentum of a system of particles is 
defined as the sum of the individual angular momenta : 

L = Γι X Pi -h Γ2 X p 2 + · · · . 

This sum is constant in time for any closed sys tem—the law of 
conservation of angular momentum. 

F I G . 1 6 . 

It should be noted that the definition of the angular momentum 
involves an arbitrarily chosen origin O from which the radius 
vectors of the particles are measured. Although the magnitude 
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and direction of the vector L depend on the choice of O, it is 
easily seen that this dependence does not affect the law of con
servation of angular momentum. F o r if we move the point O 
through some distance a of given magnitude and direction, the 
radius vectors of the particles will all be changed by that amount , 
and the angular momentum is changed by 

a X p i + a X p s H = a X (pi 4^p2-h · ·) = a X P , 

where Ρ is the total momentum of the system. F o r a closed 
system Ρ is constant , and we therefore see that changing the ori
gin does not affect the constancy of the total angular momentum 
of a closed system. 

T h e angular momentum of a system of particles is usually 
defined with respect to the centre of mass of the system as origin. 
This will be assumed below. 

Let us determine the time derivative of the angular momentum 
of a particle. T h e rule for differentiation of a product gives 

dL d, . dr dp 

Since dridt is the velocity ν of the particle, and ρ = mv, the first 
term is mv X ν = 0, because the vector product of any vector 
with itself is zero. In the second term the derivative dp/dt is, as 
we know, the force F acting on the particle. T h u s 

dLldt = r X F. 

T h e vector product r X F is called the torque (relative to a 
given point O) and will be denoted by K: 

Κ = r X F. 

Similarly to the previous discussion of the angular momentum, we 
can say that the magnitude of the torque is equal to the product of 
the magnitude F of the force and its moment arm hp, i.e. the 
length of the peφend i cu l a r from O to the line of action of the 
force: 

Κ = Fhp. 
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Thus the rate of change of the angular momentum of a particle 
is equal to the torque acting on it: 

dLldt = K . 

T h e total angular momentum of a closed system is conserved; 
the time derivative of the sum of the angular momen ta of the 
particles in the system is therefore zero: 

H e n c e it follows that 

Κι + Κ2 + · · · = 0. 

We see that in a closed sys tem the sum of the torques is zero , 
as well as the sum of the forces on all the particles (§7). T h e 
latter s tatement is equivalent to the law of conservat ion of 
momentum, and the former to the law of conservat ion of angular 
momentum. 

The re is a profound relation be tween these propert ies of a 
closed system and the fundamental propert ies of space itself. 

Space is homogeneous. This means that the propert ies of a 
closed system do not depend on its posit ion in space. Let us 
suppose that a system of particles undergoes an infinitesimal 
displacement in space, whereby all the particles are moved the 
same distance in the same direction, and let the vector of this 
displacement be dR. T h e work done on the ith particle is F j . dR. 
T h e sum of the work done must be equal to the change in the 
potential energy of the system; but since the proper t ies of the 
system do not depend on its position in space, this change must 
be zero. T h u s we must have 

F i . í / R + F 2 . í / R + - · · = (Fi + F2H-- · · ) . ί / Κ = 0 . 

Since this equation must hold for any direction of the vector c/R, 
it follows that the sum of the forces Fj -h F2 + · · · must be zero. 
We therefore see that the source of the law of conservat ion 
of momentum is related to the property of homogenei ty of 
space. 
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A similar relation exists be tween the law of conservat ion of 
angular momentum and another fundamental proper ty of space , 
its isotropy, i.e. the equivalence of all directions in space. A s 
a result of this isotropy the propert ies of a closed sys tem are 
unchanged when the system undergoes any rotation as a whole , 
and the work done in such a rotation is therefore zero. It can be 
shown that this condition leads to the vanishing of the sum of 
the torques in a closed system; we shall return to this topic 
in §28. 

§ 16. Motion in a central field 
T h e law of conservat ion of angular momentum is valid for a 

closed system, and not in general for the individual particles 
forming the system; but it may in fact be valid for a single par
ticle moving in a force field. F o r this to be so the field must be a 
central field. 

T h e term central field denotes a force field in which the poten
tial energy of a particle is a function only of its distance r from a 
certain point, the centre of the field: U = U{r). T h e force acting 
on a particle in such a field also depends only on the dis tance r 
and is along the radius from the centre to any point in space. 

Although a particle moving in such a field is not a closed system, 
the law of conservat ion of angular momentum is nevertheless 
valid for it if the angular momentum is defined relative to the 
centre of the field. For , since the line of action of the force 
acting on the particle passes through the centre of the field, 
the arm of the force about that point is zero , and the torque 
is therefore zero. F r o m the equation dLldt = Κ we then have 
L = constant . 

Since the angular momentum L = mr X ν is p e φ e n d i c u l a r to 
the direction of the radius vector r, the constant direction of L 
shows that, as the particle moves , its radius vector must remain in 
one plane, peφend i cu l a r to the direction of L. T h u s particles in 
a central field move in plane orbits, the plane of each orbit passing 
through the centre of the field. 

T h e law of conservat ion of angular momentum in such a "p lane" 
motion may be put in an intuitive form. T o do so, we write L in 
the form 

L = mr X V = mr X (dsldt) = mr X dsldt, 
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T h e problem of motion in a central field is particularly impor
tant because the problem of the relative motion of two interacting 
particles (the two-body problem) can be reduced to it. 

Let us consider this motion in the centre-of-mass frame of the 
two particles. In this frame of reference the total momen tum of 
particles is zero : 

m i V i H- m 2 V 2 = 0, 

where Vj and V2 are the velocities of the particles. Let the relative 
velocity of the particles be 

v = V 1 - V 2 . 

where ds is the vector of the displacement of a particle in a time 
dt. T h e magnitude of the vector product of two vectors has the 
geometrical significance of the area of the parallelogram which 
they form. T h e area of the parallelogram formed by the vectors 
ds and r is twice the area of the infinitely narrow sector OAA' 
(Fig. 17) swept out by the radius vector of the moving particle in 
time dt. Denot ing this area by dS, we can write the magnitude of 
the angular momentum as 

L = 2m dSldt. 

T h e quanti ty dSldt is called the sectorial velocity. 
Thus the law of conservat ion of angular momentum can be 

formulated in terms of the constancy of the sectorial velocity: 
the radius vector of the moving particle describes equal areas in 
equal t imes. In this form it is called Kepler's second law. 
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F r o m these two equat ions we easily find the formulae 

ηί2 nil 
Vi = ; V, V2 = • V, 

which express the velocity of each particle in te rms of their 
relative velocity. 

We substi tute these formulae in the expression for the total 
energy of the part icles, 

Ε = imiVi^-\- i/n2V2^ -h Í7 ( r ) , 

where U{r) is the mutual potential energy of the particles as a 
function of the distance r be tween them (i.e. of the magni tuae of 
the vector r = F J — Γ2). A simple reduction then gives 

E = imv'-^U{r), 

where 

m = minhlimi + m^) 

and is called the reduced mass of the particles. 
W e see that the energy of the relative motion of the two 

particles is the same as if a single particle of mass m were moving 
with velocity ν = drldt in a central external field with potential 
energy i / ( r ) . T h u s the problem of the motion of two particles is 
equivalent to that of a single " r e d u c e d " particle in an external 
field. 

If the solution of the latter problem is known (i.e. if the path 
r = r ( 0 of the " r educed" particle has been found), we can 
immediately find the actual paths of the two particles m^ and 
m2 by means of the formulae 

η%2 mi 
Γι = ; r , r2 = \ r , 

mi - fm2 mi + m2 

which express the radius vectors of the particles r i and r2 with 
respect to their centre of mass in terms of their distance apart 
r = rj — r2; these formulae follow from the relation mjrj + m2r2 = 0 
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and correspond to the analogous formulae given above for the 
velocities Vi = drjdt and Vg = C / F S / Í / Í . H e n c e we see that the two 
particles will move relative to the centre of mass of the sys tem 
along geometrically similar pa ths which differ only in having 
sizes inversely proportional to the masses of the particles: 

rjr2 = fthlmi. 

During the motion the particles are always on a line passing 
through the centre of mass . 
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§ 17. Electrical interaction 
In Chapter I we have given a definition of force and the 

relation be tween force and potential energy. W e shall now go on 
to a specific analysis of some of the interactions underlying 
various physical phenomena. 

O n e of the most important kinds of interaction in N a t u r e is 
electrical interaction. In particular, the forces acting in a toms 
and molecules are essentially of electrical origin, and this inter
action is therefore what mainly determines the internal s t ructure 
of various bodies. 

T h e forces of electrical interaction depend on the existence of 
a particular physical characterist ic of part icles, their electric 
charge. Bodies having no electric charge have no electrical 
interaction. 

If bodies may be regarded as particles, the force of electrical 
interaction be tween them is proportional to the product of the 
charges on the bodies and inversely proport ional to the square of 
the distance be tween them. This is called Coulomb's law. 
Denot ing the electrical interaction force by F , the charges on 
the bodies by Ci and ^ 2 , and the distance be tween them by r, we 
can write Coulomb ' s law in the form 

F = constant x Cicjr^. 

T h e force F acts along the line joining the charges , and experi
ment shows that it is sometimes an at tract ion, somet imes a 
repulsion. Charges are therefore said to differ in sign. Bodies 
having charges of the same sign repel each other , while bodies 
having charges of opposi te signs at t ract each other . A positive 
sign of the force in Coulomb ' s law denotes repulsion, and a 
negative sign attraction. It does not mat ter which charges are 
in fact regarded as positive and which as negative, and the 

4 4 
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choice usual in physics is a historical convention. Only a differ
ence in the sign of charges has intrinsic significance. If all 
negative charges were called positive and vice versa, there 
would be no resulting change in the laws of physics. 

Since charges are now introduced for the first t ime and no 
units of charge have yet been defined, we can take the proport ion
ality coefficient in Coulomb 's law equal to unity: F = eicjr^. 
This establishes a unit of charge, namely the charge whose force 
of interaction with another similar charge at a distance of one 
centimetre is one dyne. This is called the electrostatic unit of 
charge. T h e system of units based on this choice of the constant 
coefficient in Coulomb's law is called the electrostatic or CGSE 
system. In this system the dimensions of charge are 

[e] = {VF][rYyi^^ 

= ( ^ ^ ο ϊ η ψ = gi/2cm^/2sec-^ 

In the SI system of units a larger unit of charge is used, called 
the coulomb: 

1 coulomb = 1 C = 3 X 10^ C G S E units of charge. 

By means of the expression for the force of electrical inter
action we can find the mutual potential energy of two electric 
charges Ci and ^2· If the distance be tween these charges increases 
by dr, the work done is dA = eie2drlr\ This is equal to the 
decrease in the potential energy U. T h u s 

-dU = e^e^drlr' 

= -e,e2d{\lr), 

whence 

V = eie2lr. 

Strictly speaking, a constant te rm may also be included here ; we 
have taken it as zero, in order that the potential energy should 
be zero when the charges are at an infinite distance apart . T h e 
potential energy of the interaction of two charges is therefore 
inversely proport ional to the distance be tween them. 
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§18. Electric field 
Since Coulomb's law involves the product of the charges , the 

force exerted on a charge e by another charge can be put in 
the form 

F = ^E, 

where Ε is a vector independent of the charge e and determined 
only by the charge and the distance r be tween the charges e 
and ^ 1 . This vector is called the electric field due to the charge 
^ 1 . I ts magnitude is 

and it is directed along the line joining the positions of the charges 
^ 1 and e. T h e force on e due to e^ is thus the product of e and the 
electric field at e due to e^. 

T h u s we have another way of describing electrical interaction. 
Instead of saying that particle 1 a t t racts or repels particle 2, we 
say that the first particle, whose electric charge is e^, creates a 
particular force field in the surrounding space, namely an electric 
field; particle 2 does not interact directly with particle 1, but is 
subject to the field created by the latter. 

T h e s e two ways of describing the interaction are presented 
here as being only formally different. In reality, however , this is 
not so; the concept of the electric field is by no means formal. An 
analysis of electric (and magnetic) fields which vary with t ime 
shows that they can exist in the absence of electric charges and 
are physically real in the same way as the particles that exist in 
N a t u r e ; however , such problems are outside the scope of the 
basic ideas concerning interactions of particles that are discussed 
here in connect ion with the laws of particle motion. 

T h e electric field created by not one but several electric charges 
is determined by the following fundamental proper ty of electrical 
interactions: the electrical interaction be tween two charges is 
independent of the presence of a third charge. F r o m this we can 
conclude that, if there are several charged particles, the electric 
field which they create is equal to the vector sum of the electric 
fields produced by each particle separately. In other words , the 
electric fields created by different charges are simply superposed 
without affecting one another. This remarkable proper ty of the 
electric field is called the property of superposition. 
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It should not be thought that the proper ty of superposit ion of 
electric fields is a direct consequence of the existence of electrical 
interaction. In reality, this fundamental proper ty of the electric 
field is a law of Na tu re . It applies to o ther fields besides electric 
fields and plays a very important part in physics. 

Let us apply the proper ty of supeφos i t i on to determine the 
electric field of a composi te body at large dis tances from it. If 
the charges on the particles which compose the body are ^i, e^.,.. 
then the fields which they create at a dis tance r are 

E, = ejr\ E2 = ejr',.,., 

At large distances from the body we may regard the dis tances 
from the various particles as equal and the direction, from the 
particles to the point considered, as constant . T h u s by using the 
property of supeφos i t ion to find the total field Ε due to the body, 
we can simply take the algebraic sum of the fields E j , · · · · 

E= {eι-l·e2-l·"')|r^. 

W e see that the field of a composi te body is the same as the field 
of a single particle with charge 

^ = ^ 1 + ^2 + · · · · 

In other words , the charge on the composi te body is equal to the 
sum of the charges on the particles which compose the body and 
does not depend on their relative position and motion. This is 
called the law of conservation of charge. 

In general the electric field is complicated, varying from point to 
point in both magnitude and direction. T o represent it graphically 

F I G . 1 8 . 
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we can use electric lines of force; these are lines which at every 
point in space have the direction of the electric field acting at tha t 
point. 

If the field is created by a single charge, the lines of force are 
straight lines radiating from the position of the charge, or con
verging to its position, according as the charge is positive or 
negative (Fig. 18). 

F r o m the definition of the lines of force it is clear that only 
one line of force passes through each point in space (not occupied 
by an electric charge), in the direction of the electric field acting 
at that point. T h u s the lines of force do not intersect at points in 
space where there are no charges. 

Electric lines of force in a constant field cannot be closed. F o r 
when a charge moves along a line of force, the field forces do a 
positive amount of work, since the force is always along the path. 
If there existed closed lines of force, therefore, the work done by 
the field forces when a charge moved along such a line back to 
its starting point would not be zero, in conflict with the law of 
conservat ion of energy. 

Thus the lines of force must necessarily begin and end, or else 
go to infinity. T h e points where they begin and end are the charges 
which create the field. A line of force cannot go to infinity at both 
ends , since if it did, the field forces would do work when a charge 
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is t ransported along such a line from infinity and back to infinity, 
in contradiction with the fact that the potential energy is zero at 
both ends of the path. 

One end of a line of force must therefore necessarily be at a 
charge; the other may go either to infinity or to a charge of the 
opposite sign. A s an illustration. Fig. 19 shows the field of two 
charges with opposi te signs, and — ^ 2 - T h e diagram is for the 
case where is greater than ^2· Then some of the lines of force 
leaving + ^ 1 end at the charge —62, while the others go to infinity. 

§ 19. Electrostatic potential 
Like the force, the potential energy Í / of a charge e in an 

electric field is proportional to the magnitude of the charge, i.e. 

υ = 6φ. 

T h e quanti ty φ which appears here , and which is the potential 
energy of a unit charge, is called the potential of the electric 
field 

On comparing this definition with that of the field (F = ^E, 
where F is the force acting on the charge e) and using the general 
relation be tween force and potential energy, Fs = —dUlds 
(see §10), we find that a similar relation holds be tween the field 
and the potential: 

E, = -dφ|ds. 

T h e potential energy of two charges ei and ^2 at a distance r is, 
as we know, 

U = eie2¡r. 

T h e potential of the field due to a charge e^ at a dis tance r is 
therefore 

Φ = ejr. 

With increasing distance from the charge, the potential decreases 
inversely as the distance. 

If the field is due not to one but to several charges e^ ^ 2 . . · i t 
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follows from the principle of superposit ion that the potential at 
any point in space is given by the formula 

(/) = - + - + · · · , 

where is the distance of the point considered from the charge e^. 
When a charge e moves from a point where the potential is φι 

to a point where it is Φ2, the work done by the field forces is 
equal to the product of the charge and the difference of potential 
be tween the initial and final points: 

Λ 12 = ^(Φΐ-φ2). 

Points at which the potential has a given value lie on a certain 
surface called an equipotential surface. When a charge moves on 
an equipotential surface, the work done by the field forces is 
zero. If the work is zero , the force must be perpendicular to the 
displacement. W e can therefore say that the electric field at any 
point is p e φ e n d i c u l a r to the equipotential surface through that 
point. In other words , the lines of force are p e φ e n d i c u l a r to 
the equipotential surfaces. F o r example, for a point charge the 
lines of force are straight lines passing through the charge, and 
the equipotential surfaces are concentric spheres with the charge 
as centre. 

T h e electric potential has dimensions 

[φ] = 

= gi/2 cmi/2 .sec-^ 

This is the unit of potential in the C G S E system. In the SI 
system a unit 300 times smaller is used, called the volt: 

1 V = 1/300 C G S E unit of potential. 

If a charge of one coulomb moves be tween two points whose 
potentials differ by one volt, then the work done by the field 
forces is 3 X 10» X 1/300 = 10^ erg, or one joule : 

1 C.V = 1 J. 
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§20. Gauss'theorem 
We shall now define the important concept of electric flux. T o 

explain this in te rms of an analogy, let us imagine the space 
occupied by an electric field to be filled with some imaginary 
fluid whose velocity at every point is equal to the electric field 
in magnitude and direction. T h e volume of fluid passing through 
any surface per unit time is equal to the electric flux through that 
surface. 

T h e electric flux through a spherical surface of radius r due 
to a point charge e at its centre may be found as follows. T h e 
field in this case is, by Coulomb ' s law, Ε = elr^. T h e velocity 
of the imaginary fluid is therefore also elr^, and its flux is equal 
to this velocity multiplied by the area of the sphere , 4nr^. T h u s 
the flux is 

Ε . 4nr^ = Aire. 

W e see that the flux is independent of the radius of the sphere 
and is determined only by the charge. I t may be shown that , if 
the sphere is replaced by any other closed surface surrounding 
the charge, the electric flux through it is unchanged and is again 
equal to Ane. I t should be emphasised that this important result 
is specifically a consequence of the fact that Coulomb ' s law 
involves the inverse square of the dis tance. 

Let us now consider the electric flux due not to one but to 
several charges. This may be determined by using the super
position property of the electric field. T h e flux through any 
closed surface is obviously equal to the sum of the fluxes from 
the individual charges within that surface. Since each such flux 
is equal to Απ t imes the charge, the total electric flux through a 
closed surface is equal to 4 π t imes the algebraic sum of the 
charges within the surface. This is chilled Gauss' theorem. 
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If there is no charge within the surface or the total charge 
within it is zero, the total electric flux through the surface is zero . 

Let us consider a narrow bundle of lines of force bounded by a 
surface itself consisting of lines of force (Fig. 20), and cut this 
bundle or tube of force by two equipotential surfaces 1 and 2; 
and let us determine the flux through the closed surface formed 
by the lateral surface of the tube of force and the equipotential 
surfaces 1 and 2. If there is no charge within this closed surface, 
the total flux through it will be zero. But the flux through the 
lateral surface of the tube is obviously zero , and the fluxes 
through the surfaces 1 and 2 must therefore be equal. T h e bundle 
of lines of force may be visualised as a je t of liquid. 

Let the fields at the cross-sections 1 and 2 be and and 
the areas of these cross-sections be 5 i and Since the tube of 
force is assumed to be narrow, the fields £Ί and Eg may be 
regarded as constant over the respect ive cross-sect ions. W e can 
therefore write the equality of the fluxes through the surfaces 
1 and 2 as 

SiEi = S2E2', 

since the field is perpendicular to the equipotential surface, the 
flux is jus t the product of the field and the surface area. T h e 
number of lines of force passing through the cross-section 
5i is equal to the number Ν2 passing through S2, and we can 
therefore write 

NJS.E, = NJS2E2. 

T h e quantities ni = NjSi and «2 = ^ ^ 2 / ^ 2 are the numbers of 
lines of force per unit area of the surfaces 1 and 2, which are 
orthogonal to the lines of force. T h u s we see that the densi ty or 
concentrat ion of the lines of force is proport ional to the field: 

« 1 / / Ι 2 = EJE2' 

T h e description of the field by means of the lines of force 
therefore not only indicates the direction of the field but also 
gives an idea of its magnitude: where the lines of force are close 
together the electric field is strong, and where they are far apar t 
it is weak. 
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§21 . Electric fields in simple cases 
In many cases G a u s s ' theorem enables us to find the field due 

to composite charged bodies if the charge distribution in them is 
sufficiently symmetrical . 

As a first example , let us determine the field of a symmetrically 
charged sphere. T h e field of such a sphere is along its radii and 
depends only on the distance from the centre of the sphere. T h e 
field outside the sphere is therefore easily calculated. T o do so, 
let us find the flux through a spherical surface of radius r con
centric with the sphere. This flux is evidently Απν'Ε. By G a u s s ' 
theorem, the flux is Aire, where e is the charge on the sphere. 
Hence Απ/^Ε = Απβ, or 

Ε =6/1^. 

Thus the field outside the sphere is the same as that of a point 
charge at the centre of the sphere and equal to the charge on the 
sphere. Accordingly, the potential is also the same as that of a 
point charge: 

φ = e/r. 

T h e field within the sphere depends on how the charges are 
distributed within the sphere. If all the charges are on the 
surface of the sphere , then the field within the sphere is zero. If 
the charge is distributed uniformly through the volume of the 
sphere with density ρ per unit volume, then the field within the 
sphere can be found by applying G a u s s ' theorem to a spherical 
surface of radius r lying within the sphere: 

Ε . Απκ' = Αττ6γ·> 

where e r is the charge within the spherical surface. This charge is 
equal to the product of the charge densi ty and the volume of 
a sphere of radius r: e r = Anr^pl3. T h u s 

4 7 Γ , ^ Ε = 4 7 Γ . 4 7 Γ ^ ρ / 3 , 

or 

E = 4 7 r p r / 3 . 
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W e see that the field within a sphere of uniform charge per unit 
volume is proportional to the distance from the cent re , while 
the field outside the sphere is inversely proport ional to the square 
of this distance. Figure 21 shows the field of such a sphere as a 
function of the distance from its centre {a denoting the radius 
of the sphere). 

F I G . 2 2 . 

As a second example, let us determine the field of a charged 
straight wire with charges distributed uniformly along it. If the 
wire is assumed to be sufficiently long, the effect of its ends may 
be neglected, i.e. it may be regarded as infinitely long. It is evident 
from symmetry that the field due to such a wire can have no 
component in either direction along the wire (since the two 
directions are entirely equivalent) , and must therefore be per
pendicular to the wire at every point. I t is then easy to determine 
the field of the wire. Let us consider the flux through a closed 
surface of radius r and length / with its axis along the wire 
(Fig. 22) . Since the field is perpendicular to the axis, the flux 

Pure Mathematical Physics



§21] E L E C T R I C F I E L D S I N S I M P L E C A S E S 55 

through the ends of the cylinder is zero. T h e total flux through 
this closed surface therefore reduces to the flux through the 
lateral surface of the cylinder, which is evidently Ε. ΙπΗ. By 
G a u s s ' theorem, this flux is Aire, where e is the charge on a 
length / of the wire; if q denotes the charge per unit length of the 
wire, then e = ql. T h u s we have 

2wrlE = 4πβ = Airql, 

whence 

E = 2qln ^ 

We see that the field due to a uniformly charged wire is inversely 
proportional to the distance r from the wire. 

Let us determine the potential of this field. Since the field Ε is 
along the radius at every point, its radial component Er is the 
same as its magnitude E. By the general relation be tween field 
and potential we therefore have 

-άφΙάΓ = E = Iqlr, 

whence 

φ = —2q \oger-l· constant . 

We see that in this case the potential is a logarithmic function of 
the distance from the wire. T h e constant in this formula can not 
be determined by using the condition that the potential should 
vanish at infinity, since the above express ion becomes infinite 
as r 00. This is a result of the assumption that the wire is of 
infinite length, and signifies that the formula derived above can 
be used only for distances r which are small in compar ison with 
the actual length of the wire. 

W e may also find the field of a uniformly charged infinite plane. 
It is evident from symmetry that the field is perpendicular to the 
plane and has equal values (but opposi te directions) at equal 
distances on either side of the plane. 

Let us consider the flux through the closed surface of a 
rectangular parallelepiped (Fig. 23) bisected by the charged 
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plane and having two faces parallel to that plane (the part of the 
plane lying within the parallelepiped is hatched in the diagram). 
T h e only non-zero flux is through these faces. G a u s s ' theorem 
therefore gives 

2SE = Aire = 4 π 5 σ , 

where S is the area of the face and σ the charge per unit area of 
the plane (surface density of charge). T h u s we have 

Ε — Ιττσ. 

We see that the field of an infinite plane is independent of the 
distance from it. In other words , a charged plane creates a 
uniform electric field on either side of it. T h e potential of a 
uniformly charged plane is a linear function of the distance χ 
from it: 

φ = —2 ττσχ Η- constant . 

§22. Gravitational field 
As well as electrical inierRCtion, gravitational interaction plays 

an extremely important part in Na tu re . This interaction is a 
property of all bodies , whether they are electrically charged or 
neutral, and is determined only by the masses of the bodies . T h e 
gravitational interaction between all bodies is an at traction, the 
force of interaction being proportional to the product of the 
masses of the bodies. 

If the bodies may be regarded as particles, the force of gravita
tional interaction is found to be inversely proport ional to the 
square of the distance be tween them and proport ional to the 
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and its value is 

G = 6 - 6 7 x 1 0 - « cm^/g.sec^. 

T h e extremely small value of G shows that the force of 
gravitational interaction can become considerable only for very 
large masses . F o r this reason the gravitational interaction plays 
no part in the mechanics of a toms and molecules. With increasing 
mass the importance of the gravitational interaction increases , 
and the motion of bodies such as the Moon , the planets and the 
artificial satellites is entirely determined by gravitational forces. 

T h e mathematical formulation of N e w t o n ' s law of gravitation 
for particles is similar to that of Coulomb 's law for point charges. 
Both the gravitational and the electrical force are inversely 
proportional to the square of the distance, the mass in the 
gravitational interaction corresponding to the charge in the 
electrical interaction. Howeve r , whereas electrical forces may 
be either attractive or repulsive, the gravitational forces are 
always attractive. 

T h e proportionali ty coefficient in Cou lomb ' s law has been put 
equal to unity by appropriate choice of the unit of charge. W e 

product of their masses . Denot ing the masses of the bodies by 
mi and nh and the distance be tween them by r, we may write 
the gravitational force between them as 

F = —Gmim2lr^, 

where G is a universal coefficient of proportionali ty independent 
of the nature of the interacting bodies ; the minus sign shows that 
the force F is always attractive. This formula is called Newton's 
law of gravitation. 

T h e quanti ty G is called the gravitational constant', it is 
evidently the force of attraction be tween two particles each of 
unit mass at unit distance apart. T h e dimensions of the gravita
tional constant in the C O S system are 

[G] = [FMrYI[mY 

= (g.cm.sec~2)cmVg^ 

= cmVg.sec^ 
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could obviously proceed similarly with N e w t o n ' s law of gravita
tion: by putting the gravitational constant equal to unity we 
should define a certain unit of mass . This would clearly be a 
derived unit relative to the centimetre and the second, and its 
dimensions would be cm^/sec^. T h e new unit of mass would be 
such as to impart an acceleration of 1 cm/sec^ to an equal mass 
at a distance of 1 cm. Denot ing this mass by μ, we can write 

G - 6 ' 6 7 X 10-«cm-Vg.sec-

= 1 cm^/μ.sec^, 

whence μ = 1-5 x 10^ g = 15 tons . This new unit is obviously 
inconvenient , and it is therefore not used, but we can see that in 
principle a system of units could be constructed in which the 
only arbitrary units would be those of length and t ime, and 
derived units could be constructed for all o ther quanti t ies, 
including mass. This system of units is not used in pract ice, but 
the possibility of constructing it again shows the arbitrariness of 
the C G S system. 

F r o m the expression for the force of gravitational interaction 
between two particles we can easily find their potential energy 
U. Using the general relation be tween U and F\ 

—dUldr = F = —Οιη^ηι^Ιϊ^, 

we find 

U = —GmiJnJn 

the arbitrary constant in U is taken as zero so that the potential 
energy should vanish when the distance be tween the particles is 
infinite. This formula is similar to the formula 

υ = e.ejr 

for the potential energy of the electrical interaction. 
W e have given above the formulae for the force and potential 

energy of the gravitational interaction be tween two part icles, 
but the same formulae are valid for the gravitational forces 
between any two bodies, provided that the distance be tween 
them is large compared with their size. F o r spherical bodies the 

Pure Mathematical Physics



§22] G R A V I T A T I O N A L F I E L D 59 

formulae are valid whatever the distance be tween them, r in 
this case denoting the distance be tween the centres of the spheres. 

The fact that the gravitational force acting on a particle is 
proportional to its mass enables us to define the gravitational 
field in the same way as the electric field. T h e force F acting on 
a particle of mass m is writ ten 

F = mg, 

where the field g depends only on the masses and positions of 
the bodies which create the field. 

Since the gravitational field obeys N e w t o n ' s law, which is 
mathematically similar to Coulomb ' s law for the electric field. 
G a u s s ' theorem is valid for the gravitational field also. T h e 
only difference is that the charge in G a u s s ' theorem is now 
replaced by the mass times the gravitational constant . T h u s 
the gravitational flux through a closed surface is —ΑπηιΟ, where 
m is the total mass within the surface; the minus sign is due to 
the fact that gravitational forces are at tractive. 

By using this theorem we can, for example , determine the 
gravitational field within a uniform sphere. This problem is 
identical with that of a uniformly charged sphere , discussed 
in §21 . F r o m the result obtained there we can write down 
immediately 

g =-AttG prl?>, 

where ρ is now the mass density of the sphere. 
T h e gravitational force acting on a body near the Ear th ' s 

surface is called the weight Ρ of the body. T h e distance of such 
a body from the centre of the Ear th is R^z, where R is the 
Ear th ' s radius and ζ the altitude of the body above the surface 
of the Earth. If the altitude ζ is very small compared with R it 
may be neglected, and the weight of the body is then 

P= GmMIR\ 

where Μ is the mass of the Ear th . If this formula is writ ten 

P=^rng, 
then 

2=GMIR\ 
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T h e constant g is then called the acceleration due to gravity. I t 
is the acceleration of free fall of a body in the Ear th ' s gravitational 
field. 

At altitudes ζ such that the force of gravity may be regarded as 
constant , the potential energy of a body is given by the formula 

U = Pz = mgz. 

This can be seen from the general formula derived in §10 for the 
potential energy in a uniform field, if use also the fact that in 
the present case the force is downwards , i.e. in the direction of 
decreasing z. 

In reality, the acceleration due to gravity, g, is not the same at 
different points on the Ear th ' s surface, since the latter is not 
perfectly spherical. It should also be remembered that the 
rotation of the Ear th about its axis causes a centrifugal force 
opposing the force of gravitation. It is therefore necessary to 
define an effective acceleration due to gravity, which is less than 
that on a hypothetical non-rotating Ear th . At the poles this 
acceleration is ^ = 983-2 c m / s e c ^ and at the equator it is 
g = 978-0 cm/sec2. 

T h e value of g sometimes appears in the definition of the units 
of measurement of physical quantities (e.g. force and work) . 
F o r this p u φ o s e a standard value is arbitrarily defined, 

g = 980-665 cm/sec^, 

which is very close to the value at latitude 45°. 

§2 3. The principle of equivalence 
T h e fact that the force of gravity is proport ional to the mass of 

the particle on which it acts (F = mg) is of very deep physical 
significance. 

Since the acceleration acquired by a particle is equal to the 
force acting on it divided by the mass , the acceleration w of a 
particle in a gravitational field is equal to the field itself, 

w = g, 

and is independent of the mass of the particle. In other words , 
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the gravitational field has the remarkable proper ty that all bodies , 
of whatever mass , are equally accelerated by it. This proper ty 
was first discovered by Galileo in his exper iments on the fall of 
bodies under the Ear th ' s gravity. 

A similar behaviour of bodies would be found in a space where 
no external forces act on the bodies , if their motion were observed 
in a non-inertial frame of reference. Let us imagine, for example , 
a rocket in free motion in interstellar space, where the action of 
gravitational forces may be neglected. Objects within such a 
rocket will ' ' ñoa t " , remaining at rest relative to it. If the rocket 
is given an acceleration w, however , all the objects in it will 'Tall" 
to the floor with acceleration —w. This is the same as would be 
observed for a rocket moving without acceleration but subject 
to a uniform gravitational field —w towards the floor. It would not 
be possible to distinguish by experiment whether the rocket is 
moving with an acceleration or is in a uniform gravitational field. 

This similarity between the behaviour of bodies in a gravita
tional field and in a non-inertial frame of reference const i tutes 
what is called the principle of equivalence. T h e fundamental 
significance of the similarity is fully shown in the theory of 
gravitation based on the theory of relativity. 

In the above discussion we have considered a rocket moving 
in space in the absence of a gravitational field. T h e same argument 
can be ' ' inver ted" by considering a rocket moving in a gravita
tional field, such as that of the Earth. A rocket moving ' ' freely" 
(i.e. without engines) in such a field will receive an acceleration 
equal to the field g. T h e rocket is then a non-inertial frame of 
reference, and the eff'ect of this on the motion relative to the 
rocket of the bodies within it is jus t balanced by the effect of the 
gravitational field. This brings about a state of "weight lessness" ; 
that is, objects in the rocket behave as they would in an inertial 
frame of reference in the absence of any gravitational field. T h u s , 
by considering the motion relative to an appropriately chosen 
non-inertial frame of reference (in this case , the accelerated 
rocket) , we can as it were "e l iminate" the gravitational field. Tha t 
is, of course , another aspect of the same principle of equivalence. 

The gravitational field which " a p p e a r s " in an accelerated 
rocket is uniform throughout the rocket and is everywhere equal 
to —w. Actual gravitational fields, on the other hand, are never 
uniform. Thus the "el iminat ion" of an actual gravitational field 
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by changing to a non-inertial frame of reference is possible only 
within small regions of space, over which the field changes so 
little that it may be regarded as uniform with sufficient accuracy. 
In this sense we may say that the gravitational field and the 
non-inertial frame of reference are only " loca l ly" equivalent. 

§24. Keplerian motion 
Let us consider the motion of two bodies which attract each 

other in accordance with the universal law of gravitation, and 
first suppose that the mass Μ of one of the bodies is much 
greater than the mass m of the other body. If the distance r 
between the bodies is large in comparison with their size, we 
have a problem of the motion of a particle m in a central gravita
tional field due to a body Μ which may be regarded as at rest. 

T h e simplest motion in such a field is uniform motion in a 
circle round the centre of the field, i.e. round the centre of M . 
T h e acceleration is then towards the centre of the circle and is, 
as we know, equal to v^lr, where ν is the velocity of the particle 
m. When multipHed by the mass m, this must equal the force 
exerted on the particle by the body M , i.e. 

mvVr = GmMlr\ 

whence 

V = ViGMir). 

Using this formula we can, in particular, determine the velocity 
of an artificial satellite moving near the Ear th ' s surface. Replac
ing r by the Ear th ' s radius R and GM/R^ by the acceleration due 
due to gravity g, we obtain as the velocity of the satellite 

Vi = V(GM/R) = V{gR), 

called the first cosmic velocity. Substituting g ~ 9 8 0 c m / s e c ^ 
R = 6500 km, we find Vi = S km/sec. 

T h e above formula for ν gives a relation be tween the radius 
r of the orbit and the period Τ of one revolution. Putt ing 

V = lirrlTy 
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we find 

We see that the squares of the periods of revolution are pro
portional to the cubes of the orbit radii. This is Kepler's third law, 
named after the as t ronomer who in the early seventeenth century 
discovered empirically from observat ions of the planets the 
fundamental laws of the motion of two bodies under gravitational 
interaction (called Keplerian motion). T h e s e laws (of which the 
second, stating the constancy of the sectorial velocity for motion 
in a central field, has been discussed in §16) played an important 
part in N e w t o n ' s discovery of the universal law of gravitation. 

Let us now determine the energy of the particle m. I ts potential 
energy is, as we know, 

U = -GmMIr, 

Adding to this the kinetic energy émi;^, we find the total energy of 
the particle: 

Ε = imv^ — GmMir, 

which is constant in time. 
F o r motion in a circle we have 

mv^ = GmMIr, 

and therefore 

E = -hmv^ =-GmMllr. 

W e see that for motion in a circle the total energy of the particle 
is negative. This is in agreement with the results of § 13, according 
to which, if the potential energy at infinity is zero , the motion will 
be finite for Ε < 0 and infinite for £" ^ 0. 

We have discussed a simple circular motion occurring under 
the action of an attractive force 

F = -GmMlr\ 
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In such a field, however , the particle may move not only in a 
circle but also in an ellipse, hyperbola or parabola. F o r any of 
these conic sections one focus (in a parabola, the focus) is at the 
centre of force {Kepler's first law). Elliptical orbits evidently 
correspond to negative values of the total energy of the part icle, 
Ε < 0 (since the motion is finite). Hyperbol ic orbi ts , with 
branches which go to infinity, correspond to positive values of 
the total energy, Ε > 0. Finally, for motion in a parabola Ε = 0. 
This means that in parabolic motion the velocity of the particle 
at infinity is zero. 

Using the formula for the total energy of the particle, we can 
easily find the minimum velocity which a satellite must have in 
order to move in a parabolic orbit, i.e. to escape from the Ear th ' s 
attraction. Putting r= R'm the formula 

Ε = imv^ — GmMir 

and equating Ε to zero , we obtain 

V2 = ^i2GMlR) = \/{2gR), 

called the second cosmic velocity or velocity of escape. A 
comparison with the formula for the first cosmic velocity shows 
that 

V2 = \/2vi = \\'2 km/sec. 

Let us now see how the parameters of elliptical orbits are 
defined. T h e radius of a circular orbit may be expressed in 
terms of the energy of the particle: 

r = al2\El 

where a = GmM. When the particle moves in an elHpse, the same 
formula gives the major semiaxis a of the ellipse: 

a = al2\E\. 

T h e minor semiaxis b of the elHpse depends not only on the 
energy but also on the angular momentum L: 

b = LlV{2m\E\). 
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The smaller the angular momentum L, the greater the elongation 
of the ellipse (for a given energy). 

The period of revolution in an ellipse depends only on the 
energy, and is given in terms of the major semiaxis by 

= ΑτΓ^ιηα^Ια. 

So far we have considered the case where the mass Μ of one 
of the bodies is much greater than the mass m of the other body, 
and we have therefore regarded the body Μ as being at rest. In 
reality, of course , both bodies are in motion, and they describe, 
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in the centre-of-mass frame, geometrically similar paths in the 
form of conic sections with a common focus at the centre of 
mass . Fig. 24 shows geometrically similar elliptical orbits of 
this kind. T h e particles m and Μ are at every instant at the ends 
of a line through the common focus O , and their dis tances from 
O are inversely proportional to their masses . 
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M O T I O N O F A R I G I D B O D Y 

§25. Types of motion of a rigid body 
So far we have considered the motion of bodies which might 

be regarded as particles under certain conditions. Let us now go 
on to consider motions in which the finite size of bodies is im
portant . Such bodies will be assumed to be rigid. In mechanics , 
this term means that the relative position of the parts of a body 
remains unchanged during the motion. T h e body thus moves as 
a whole. 

T h e simplest motion of a rigid body is one in which it moves 
parallel to itself; this is called translation. F o r example , if a 
compass is moved smoothly in a horizontal plane, the needle 
will retain a s teady nor th - sou th direction and will execute a 
translational motion. 

In translational motion of a rigid body, every point in it has 
the same velocity and describes a path of the same shape, there 
being merely a displacement between the paths . 

Another simple type of motion of a rigid body is rotation about 
an axis. In rotation, the various points in the body describe 
circles in planes peφend i cu l a r to the axis of rotation. If in a 
time dt the body rotates through an angle dφ, the path ds t raversed 
in that time by any point Ρ of the body is clearly ds = r dφ, where 
r is the distance of Ρ from the axis of rotation. Dividing by 
dt, we obtain the velocity of P: 

v = r dφ|dt. 

T h e quantity dφ|dt is the same at every point of the body and 
is the angular displacement of the body per unit t ime. It is called 
the angular velocity of the body, and we shall denote it by Ω. 

T h u s the velocities at various points in a rigid body rotating 
about an axis are given by 

v = ril, 

6 6 
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These simple forms of motion of a rigid body are especially 
important because any motion of a rigid body is a combination 
of translation and rotation. This may be illustrated by the 
example of a body moving parallel to a certain plane. Let us 
consider two successive positions of the body, and A2 (Fig. 
25). T h e body may evidently be brought from to A2 in the 
following way. We first move the body by a translation from 

to a position A' such that some point O of the body reaches 
its final position. If we then rotate the body about O through a 
certain angle φ , it will reach its final positioning. 

W e see that the complete movement of the body consists of a 
translation from A^ to A' and a rotation about O which finally 
brings the body to the position A2. T h e point O is clearly an 
arbitrary one: we could equally well carry out a translation of 
the body from the position A^ to a, position A" in which some 
other point 0 \ instead of O , has its final position, followed by 

where r is the distance of the point from the axis of rotation, the 
velocity being proport ional to this distance. 

The quantity Ω in general varies with t ime. If the rotation is 
uniform, i.e. the angular velocity is constant , Ω can be determined 
from the period of rotation T\ 

A rotation is defined by the direction of the axis of rotation and 
the magnitude of the angular velocity. These may be combined 
by means of the angular-velocity vector ft, whose direction is 
that of the axis of rotation and whose magnitude is equal to the 
angular velocity. Of the two directions of the axis of rotation it 
is customary to assign to the angular-velocity vector the one 
which is related to the direction of rotation by the "corksc rew 
ru le" , i.e. the direction of motion of a r ight-handed screw rotating 
with the body. 
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a rotation about O' which brings the body into its final posit ion 
A 2. It is important to note that the angle of this rotation is exact ly 
the same as in the rotation about O, but the distance t raversed in 
the translational motion of the points O and O ' is in general 
different. 

T h e foregoing example shows (what is in fact a general rule) 
that an arbitrary motion of a rigid body can be represented as a 
combination of a translational motion of the whole body at the 
velocity of a point O in it and a rotation about an axis through 
that point. T h e translational velocity, which we denote by V, 
depends on the point in the body which is chosen, but the 
angular velocity ft does not depend on this choice: whatever 
the choice of the point O , the axis of rotation passing through it 
will have the same direction and the angular-velocity magnitude 
Ω will be the same. In this sense we can say that the angular 
velocity ft is " a b s o l u t e " and speak of the angular velocity of 
rotation of a rigid body without specifying the point through 
which the axis of rotation passes . T h e translational velocity is 
not " a b s o l u t e " in this way. 

T h e " b a s e " point O is usually taken to be the centre of mass of 
the body. The translational velocity V is then the velocity of the 
centre of mass . T h e advantages of this choice will be explained 
in §26. 

Each of the vectors V and ft is specified by its three components 
(in some system of coordinates) . It is therefore necessary to 
specify only six independent quantities in order to know the 
velocity at any point in a rigid body. F o r this reason a rigid body 
is said to be a mechanical system with six degrees of freedom, 

§26. The energy of a rigid body in motion 
T h e kinetic energy of a rigid body in translational motion is 

very easily found. Since every point in the body is then moving 
with the same velocity, the kinetic energy is simply 

where V is the velocity of the body and Μ its total mass . This 
expression is the same as for a particle of mass Μ moving with 
velocity V. It is clear that translational motion of a rigid body 
is not essentially different from the motion of a particle. 
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Let us now determine the kinetic energy of a rotating body. T o 
do so, we imagine it divided into parts so small that they may be 
regarded as moving like particles. If is the mass of the Ith 
part and r, its distance from the axis of rotat ion, then its velocity 
is Vi = Γ^Ω, where Ω is the angular velocity of rotation of the body. 
The kinetic energy is then imiVÍ\ and summation gives the total 
kinetic energy of the body: 

T h e sum in the parentheses depends on the rigid body concerned 
(its size, shape and mass distribution) and on the position of the 
axis of rotation. This quantity characterist ic of a given solid 
body and a given axis of rotation is called the moment of inertia 
of the body about that axis, and is denoted by / : 

/ = m^r^^ -\- m2r2^Λ- · · ·. 

If the body is cont inuous it must be divided into an infinite 
number of infinitesimal par ts ; the summation in the above formula 
is then replaced by integration. F o r example , the moment of 
inertia of a solid sphere of mass Μ and radius R, about an axis 
through its centre , is 2MR^I5; that of a thin rod of length / about 
an axis perpendicular to it through its midpoint is I = Ml^l\2. 

Thus the kinetic energy of a rotating body may be writ ten as 

This expression is formally similar to that for the energy of 
translation, but the velocity V is replaced by the angular velocity 
Ω, and the mass by the moment of inertia. This is one example 
showing that the moment of inertia in rotation cor responds to 
the mass in translation. 

T h e kinetic energy of a rigid body moving in an arbitrary 
manner can be written as the sum of the translational and 
rotational energies if the point O in the method of separating 
the two motions, described in §25, is taken to be the centre of 
mass of the body. Then the rotational motion will be a motion of 
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the points in the body about its centre of mass , and there is an 
exact analogy with the separation of the motion of a sys tem of 
particles into the motion of the system as a whole and the 
" in te rna l " motion of the particles relative to the centre of mass 
(§12). W e saw in §12 that the kinetic energy of the system also 
falls into two corresponding parts . T h e " in te rna l " motion is here 
represented by the rotation of the body about the centre of mass . 
T h e kinetic energy of a body moving in an arbitrary manner is 
therefore 

T h e suffix 0 signifies that the moment of inertia is taken about an 
axis through the centre of mass . 

[It should be noted, however , that in this form the result is of 
practical significance only if the axis of rotation has a constant 
direction in the body during the motion. Otherwise the moment of 
inertia has to be taken about different axes at diflFerent t imes, 
and is therefore no longer a constant .] 

Let us consider a rigid body rotating about an axis Ζ which 
does not pass through the centre of mass. T h e kinetic energy 
of this motion is £^kin — ί^Ω^ί where / is the moment of inertia 
about the axis Z . On the other hand, we may regard this motion 
as consisting of a translational motion with the velocity V of 
the centre of mass and a rotation (with the same angular velocity 
Ω) about an axis through the centre of mass parallel to the axis Z . 
If the distance of the centre of mass from the axis Ζ is a, then 
its velocity V = ail. T h e kinetic energy of the body may therefore 
be writ ten also as 

^κίη = έΜΚ2 + ^/οΩ2 

= i(Ma^-l·Io)n\ 

Hence 

I = Io^Ma\ 

This formula relates the moment of inertia of the body about 
any axis to its moment of inertia about a parallel axis through 
the centre of mass. It is evident that / is always greater than 
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If a rigid body moves under gravity, its total energy Ε is the 
sum of the kinetic and potential energies. As an example , let 
us consider the motion of a sphere on an inclined plane (Fig. 
26). T h e potential energy of the sphere is Mgz, where Μ is the 
mass of the sphere and ζ the height of its centre. T h e law of 
conservat ion of energy therefore gives 

Ε = WV^ + i/o^2 + Mgz = constant . 

Let us suppose that the sphere rolls without slipping. T h e n 
the velocity ν of its point of contact with the plane is zero. On 
the other hand, this velocity consists of the velocity V of the 
translational motion of the point down the plane (together with 
the whole sphere) and the velocity of the point in the opposi te 
direction (up the plane) in its rotation about the centre of the 
sphere. T h e latter velocity is ÍIR, where R is the radius of the 
sphere. T h e equation ν = V—ÜR = 0 thus gives 

il=VlR. 

Substituting this expression in the law of conservat ion of 
energy and assuming that at the initial instant the velocity of 
the sphere is zero , we find the velocity of the centre of mass of 
the sphere when it has descended a vertical distance h: 

V = 
2gh_\ 

Λ + hlMRV' 

This is, as we should expect , less than the velocity of free fall 

IQ. In other words , for a given direction of the axis the minimum 
value of the moment of inertia is reached when the axis passes 
through the centre of mass. 
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of a particle or of a non-rotating body (from the same height h), 
since the decrease Mgh of the potential energy goes not only to 
increase the kinetic energy of the translational motion but also 
to increase that of the rotation of the sphere. 

§27. Rotational angular momentum 
In rotational motion of a body its angular momentum plays a 

part similar to that of the momentum in the motion of a particle. 
In the simple case of a body rotating about a fixed axis Z , this 
part is played by the angular-momentum component along that 
axis. 

T o calculate this component , we divide the body into elemen
tary par t s , as in calculating the kinetic energy. T h e angular 
momentum of the ith element is m¿R¿ X v¿, where R^ is the radius 
vector of this element relative to some point O on the axis Ζ 
about which the angular momentum is to be determined (Fig. 27). 
Since every point in the body moves in a circle round the axis 
of rotation, the velocity v̂  is tangential to the circle in Fig. 27 , 
i.e. is in a plane at right angles to OZ. We can resolve the vector 
Ri into two vectors , one along the axis and the other r̂  per
pendicular to the axis. T h e n the product ntiVi X v̂  is jus t the part 
of the angular momentum which is parallel to the axis Ζ (it will 
be recalled that the vector product of two vectors is p e φ e n d i c u l a r 
to the plane through those vectors). Since the vectors r, and v, 
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are mutually peφend i cu l a r (being a radius of the circle and a 
tangent to it), the magnitude of the product r, X v, is jus t r¡Vi, 

where η is the distance of the element from the axis of rotation. 
Finally, since = Or,, we conclude that the component of the 
angular momentum of the element m, along the axis of rotation 
is The sum ^ΙΓΙ^Ω^-mgrg^OH gives the required com
ponent Lz of the total angular momentum of the body along the 
axis Z . This quantity is also called the angular momentum of the 
body about that axis. 

When the common factor Ω is removed from the above sum 
there remains a sum which is jus t the expression for the moment 
of inertia / . Thus we have finally 

Lz = / Ω , 

i.e. the angular momentum of the body is equal to the angular 
velocity multiplied by the moment of inertia of the body about the 
axis of rotation. The analogy be tween this expression and the 
expression my for the momentum of a particle should be noticed: 
the velocity ν is replaced by the angular velocity and the mass 
is again replaced by the moment of inertia. 

If no external forces act on the body, its angular momentum 
remains constant: it rotates "by inert ia" with a constant angular 
velocity Ω . He re the constancy of Ω follows from that of Lz 
because we have assumed that the body itself is unchanged during 
the rotation, i.e. its moment of inertia is unchanged. If the relative 
position of the parts of the body, and therefore its moment of 
inertia, vary, then in free rotation the angular velocity will also 
vary in such a way that the product / Ω remains constant . F o r 
example, if a man holding weights in his hands s tands on a 
platform rotating with little friction, by extending his arms he 
increases his moment of inertia, and the conservat ion of the 
product / Ω causes his angular velocity of rotation to decrease. 

§28. The equation of motion of a rotating body 
T h e equation of motion of a particle gives, as we know, the 

relation between the rate of change of its momentum and the 
force acting on it (§7). T h e translational motion of a rigid body 
is essentially the same as the motion of a particle, and the equation 
of this motion consists of the same relation be tween the total 
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linear momentum Ρ = MV of the body and the total force F 
acting on it: 

dFldt = MdVldt = F. 

In rotational motion there is a corresponding equation relating 
the rate of change of the angular momentum of the body to the 
torque acting on it. Let us find the form of this relation, again 
taking the simple case of rotation of the body about a fixed axis Z . 

T h e angular momentum of the body about the axis of rotat ion 
has already been determined. Let us now consider the forces 
acting on the body. It is clear that forces parallel to the axis of 
rotation can only move the body along that axis and can not 
cause it to rotate . We can therefore ignore such forces and 
consider only those in the plane peφend i cu l a r to the axis of 
rotation. 

T h e corresponding torque Kz about the axis Ζ is given by the 
magnitude of the vector product r X F , where r is the vector 
giving the distance of the point of appHcation of the force F from 
the axis. By the definition of the vector product we have 

Kz = Fr sin Θ, 

where θ is the angle between F and r; in Fig. 28 the axis Ζ is at 
right angles to the plane of the diagram and passes through O, 
and A is the point of application of the force. W e can also write 

Kz = hpF, 

where hp = r sin Ö is the moment arm of the force about the axis 
(the distance of the line of action of the force from the axis). 

According to the relation established in § 15 be tween the rate 
of change of angular momentum and the applied torque , we can 
write the equation 

dLzldt=Kz or IdCildt = Kz. 

This is the equation of motion of a rotating body. T h e derivative 
dilldt may be called the angular acceleration. W e see that it is 
determined by the torque acting on the body, jus t as the accelera
tion of the translational motion is determined by the force acting. 
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There is a simple relation be tween the torque acting on a body 
and the work done in a rotation of the body. T h e work done by 
a force F when the body rotates about the axis through an 
infinitesimal angle άφ (Fig. 28) is equal to the product of the 
displacement ds = rdφ of the point A where the force is applied 
and the component Fs = F sin θ of the force in the direction of 
motion: 

F,ds = Fr sin θdφ = Kzdφ. 

We see that the torque about the axis is equal to the work done 
per unit angular displacement. On the other hand, the work done 

If there are several forces acting on the body , then Kz in the 
above equation must of course be taken as the sum of the torques . 
It must be remembered that Kz is derived from a vector , and 
torques tending to turn the body in opposi te directions about 
the axis must be given opposi te signs. T h o s e torques have 
positive signs which tend to rotate the body in the direction in 
which the angle φ of the rotation of the body about the axis is 
measured (φ is the angle whose t ime derivative is the angular 
velocity of rotation of the body: Ω = άφΙάί). 

We may also note that the point of application of a force in a 
rigid body may be displaced in any manner along its line of action 
without affecting the propert ies of the motion. This will evidently 
leave unchanged the arm of the force and therefore the torque. 

T h e condition for equilibrium of a body which can rotate about 
an axis is evidently that the sum of the torques acting on it should 
be zero. This is the law of torques (or law of moments). A 
particular case is the familiar lever rule which gives the condition 
of equilibrium for a rod able to rotate about one point in it. 
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on the body is equal to the decrease in its potential energy. W e 
can therefore put Κχάφ = —dU, or 

Κζ = -αυΐάφ. 
Thus the torque is equal to minus the derivative of the potential 
energy with respect to the angle of rotation of the body about the 
given axis. T h e analogy between this relation and the formula 
F = —dU/dx should be noticed; the latter relates the force to the 
change in potential energy in motion of a particle or translational 
motion of a body. 

It is easy to see that the equation of motion of a rotating body 
is, as it should be , in accordance with the law of conservat ion of 
energy. The total energy of the body is 

and its conservation is expressed by the equation 

F rom the rule for differentiating a function of a function we have 

dl¿^dl¿d±_ 
dt dφ dt 

= -Kzil, 

T h e derivative dCi^ldt = 2Ü dClldt. Substituting these expressions 
and cancelling the common factor Ω, we again obtain the equation 
Idnidt = Kz. 

At the end of § 15 it has been mentioned that there is a relation 
between the law of conservat ion of the angular momentum of a 
closed system and the isotropy of space. T o establish this rela
tion, we have to prove that the vanishing of the total torque acting 
in the system is a consequence of the fact that the propert ies of 
a closed system are unchanged by any rotation of it as a whole 
(that is, as if it were a rigid body). By applying the relation 
dU|dφ = —Kz to the internal potential energy of the system, 
taking Κ ζ to be the total torque on all the particles, we see that the 
condition for the potential energy to be unchanged by a rotation 
of the closed system about any axis is in fact that the total torque 
should be zero. 
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§29. Resultant force 
If several forces act on a rigid body , the motion of the body 

depends only on the total force and the total torque. This some
times enables us to replace the forces acting on the body by a 
single force called the resultant. It is evident that the magnitude 
and direction of the resultant are given by the vector sum of the 
forces, and its point of application must be so chosen that the 
resultant torque is equal to the sum of the torques . 

T h e most important such case is that of the addition of parallel 
forces, which includes, in particular, the addition of the forces of 
gravity acting on the various parts of a rigid body. 

m¡g 
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Let US consider a body and determine the total torque of gravity 
about an arbitrary horizontal axis (Z in Fig. 29) . T h e force of 
gravity acting on the element of the body is m^g, and its 
moment arm is the coordinate Xf of the element. T h e total torque 
is therefore 

T h e magnitude of the resultant is equal to the total weight 
( m i + m 2 + )^ of the body, and if the coordinate of its point of 
application is denoted by X, the torque Kz has the form 

Kz = ( m i + m o + - · ')gX. 

Equating these two expressions, we find 

X = ( m i X i + m 2 J C 2 + · · · ) / ( ^ ι + ^ 2 + · · · ) · 
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This is jus t the χ coordinate of the centre of mass of the body. 
T h u s we see that all the forces of gravity acting on the body 

can be replaced by a single force equal to the total weight of the 
body and acting at its centre of mass . F o r this reason the centre 
of mass of the body is often called its centre of gravity. 

T h e reduction of a system of parallel forces to a single resultant 
force is not possible, however , if the sum of the forces is zero. 
T h e effect of such forces can be reduced to that of a couple, 
i.e. two forces equal in magnitude and opposite in direction. It 
is easily seen that the sum Kz of their torques about any axis Ζ 
p e φ e n d i c u l a r to the plane of action of two such forces is equal 
to the product of either force F and the distance h be tween their 
lines of action (the arm of the couple): 

Kz = Fh. 

T h e effect of the couple on the motion of the body depends only 
on this quanti ty, called the moment of the couple. 

§30. The gyroscope 
In §27 we have derived the component Lz of the angular 

momentum of a body along the axis of rotation. F o r a body 
rotating about a fixed axis, only this component of the vector 
L is important. T h e simple relation be tween this component and 
the angular velocity of rotation il (Lz = I ft) has the result that 
the entire motion is simple. 

If the axis of rotation is not fixed, however , it is necessary to 
consider the entire vector L as a function of the angular-velocity 
vector Ω. This function is more complicated: the components 
of the vector L are linear functions of those of ft, but the direc
tions of the two vectors are in general different. This considerably 
complicates the nature of the motion of the body in the general 
case. 

He re we shall consider only one example of the motion of a 
body with a freely variable axis of rotation, namely the gyroscope; 
this is an axially symmetric body rotating rapidly about its 
geometrical axis. 

In such a rotation the angular momentum L is along the axis of 
the body, like the angular-velocity vector ft. This is obvious 
simply from considerat ions of symmetry: since the motion is 
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axially symmetr ic , there is no other preferred direction which 
could be taken by the vector L. 

So long as no external forces act on the gyroscope, its axis will 
remain in a fixed direction in space, since by the law of conserva
tion of angular momentum the direction (and the magnitude) of 
the vector L does not vary. If external forces are applied to the 
gyroscope, its axis will begin to deviate. It is this movement of 
the gyroscope axis (called precession) which we shall discuss. 

T h e change in direction of the gyroscope axis consists in a 
rotation about some other axis, so that the total angular-velocity 
vector is not along the geometrical axis of the body. T h e angular-
momentum vector L likewise will not coincide with this axis (nor 
with the direction of Í1). But if the primary rotation of the 
gyroscope is sufficiently rapid, and the external forces are not 
too great, the rate of rotation of the gyroscope axis will be 
relatively small, and the vector Í1 (and therefore L) will always 
be in a direction close to the axis. H e n c e , if we know how the 
vector L varies, we know approximately how the gyroscope axis 
moves. T h e change in angular momentum is given by the equation 

dLldt = K, 

where Κ is the applied torque. 

y 
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F o r example , let forces F acting in the yz plane be applied at 
the ends of the gyroscope axis (the ζ axis in Fig. 30). T h e n the 
moment Κ of the couple is along the χ axis, and the derivative 
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dLldt will also be in that direction. Hence the angular momen tum 
L, and therefore the gyroscope axis, will deviate in the direction 
of the X axis. 

Thus the application of a force to the gyroscope causes its axis 
to turn in a direction peφend i cu l a r to the force. 

F I G . 3 1 . 

An example of a gyroscope is a top supported at its lowest 
point. [ In the following discussion we neglect friction at the 
support . ] T h e top is subject to the force of gravity, whose direc
tion is constant , namely vertically downwards . This force is 
equal to the weight of the top: Ρ = Mg, where Μ is the mass of 
the top, and acts at its centre of gravity (C in Fig. 31). T h e torque 
about the point of support O is in magnitude = PI sin θ (where / 
is the distance OC and θ the angle between the axis of the top 
and the vertical), and its direction is always p e φ e n d i c u l a r to the 
vertical plane through the axis of the top. Under the action of 
this torque the vector L (and therefore the axis of the top) will 
be deflected, remaining constant in magnitude and at a constant 
angle θ to the vertical, i.e. describing a cone about the vertical. 

It is easy to determine the angular velocity of precession of the 
top. We denote this by ω to distinguish it from that of the rotation 
of the top about its own axis, which is denoted by ilo-

In an infinitesimal time dt the vector L receives an increment 
dL = Kdt p eφend icu l a r to itself and lying in a horizontal plane 
(Fig. 31). 
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Dividing this by the component of the vector L in this plane, 
we find the angle άφ through which the component turns in the 
time dt: 

αφ = T-^dL 

T h e derivative άφΙάί is evidently the required angular velocity of 
precession. Thus 

ω = Kit sin Θ. 

Substituting a: Μ gl sin θ and L = I Cío (where / is the moment of 
inertia of the top about its axis), we obtain finally 

ω = Mglllílo. 

T h e rotation of the top, it will be remembered , has been 
assumed sufficiently rapid. W e can now make this condition 
more precise: we must have ilo > ω. 

Since 

ω/Ωο = Mglim,\ 

we see that this condition implies that the potential energy of 
the top in the gravitational field {Mgl cos Θ) must be small in 
comparison with its kinetic energy (έ/Ωο^). 

§31. Inertia forces 
So far we have considered the motion of bodies with respect to 

inertial frames of reference, and have discussed only in §23 a 
frame of reference in accelerated translational motion (an 
accelerated rocket) . We have seen that , from the point of view 
of an observer moving with the rocket , the fact that the frame of 
reference is non-inertial is perceived through the appearance of 
a force field equivalent to a uniform field of gravity. 

T h e additional forces which appear in non-inertial frames of 
references are called inertia forces. Thei r characterist ic feature 
is that they are proportional to the mass of the body on which 
they act. This makes them similar to gravitational forces. 
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Let us now consider how motion occurs with respect to a 
rotating frame of reference, and the inertia forces which appear . 
T h e Earth itself, for example , is such a frame of reference; owing 
to the Ear th ' s daily rotation, the frame of reference in which the 
Earth is fixed is, strictly speaking, non-inertial, although the 
resulting inertia forces are comparat ively small because of the 
slowness of the rotation. 

Fo r simplicity, let us assume that the frame of reference is a 
disc rotating uniformly (with angular velocity Π) and consider a 
simple motion on it: that of a particle moving uniformly along 
the edge of the disc. Let the velocity of this particle relative to 
the disc be Vn, the suffix η indicating that the frame of reference 
is non-inertial. T h e velocity Vi of the particle relative to a fixed 
observer (inertial frame of reference) is evidently the sum of i;„ 
and the velocity of the points on the edge of the disc itself. T h e 
latter is i l r , where r is the radius of the disc. H e n c e 

Vi = ν η -h ílr. 

It is easy to determine the acceleration w¿ of the particle in the 
inertial frame of reference. Since the particle moves uniformly in 
a circle of radius r with velocity Vi, we have 

Wi = v?lr 

= ιν7/·4-2Ωι;„ + Ω ν . 

Multiplying this acceleration by the mass m of the particle, we 
find the force F acting on the particle in the inertial frame of 
reference: 

F = mwi. 

Let us now consider how this motion will appear to an observer 
located on the disc and regarding it as being at rest. This observer 
also will see the particle moving uniformly in a circle of radius r, 
but with velocity Vn- T h e acceleration of the particle relative to 
the disc is therefore 

Wn = Vr?lr 
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towards the centre of the disc. Regarding the disc as being at rest , 
the observer multiplies by the mass of the particle and takes 
this product to be the force F„ acting on the particle: 

F,, = mw„. 

Since 

= — 2fiv„ — n ^ r , 

and mwi = F, we find that 

F,f = F — 2mílv„—niífr. 

T h u s we see that, relative to the rotating frame of reference, the 
particle is subject not only to the ' ' t r u e " force F but also to two 
additional forces, —mCi^r and —2milVn. T h e former of these inertia 
forces is called the centrifugal force, and the latter the Coriolis 
force. The minus signs indicate that in this case both forces are 
directed away from the axis of rotation of the disc. 

T h e centrifugal force is independent of the velocity f,,, i.e. it 
exists even if the particle is at rest relative to the disc. F o r a 
particle at a distance r from the axis of rotation of the frame of 
reference this force is always equal to mil^r and is directed 
radially away from the axis. 

Having defined the centrifugal force, we may also define the 
centrifugal energy as the potential energy of a particle in the 
centrifugal force field. According to the general formula relating 
the force and the potential energy, we have 

-dUjdr = mil^r, 

whence 

L^cf ^ —imCl^f^ + constant . 

T h e arbitrary constant may reasonably be taken as zero, the 
potential energy thus being measured from its value on the axis 
of rotation (r = 0), where the centrifugal force is zero. 

T h e centrifugal force can reach very large values in specially 
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designed centrifuges. On the Ear th , it is very small. Its max imum 
value occurs at the equator , where the force on a particle of 
mass 1 g is 

mCt^R = 1 X (27Γ/24 X 60 X 60)^ χ 6-3 X 10« dyn 
= 3-3 dyn 

(R = 6-3 X 10« cm being the Ear th ' s radius). This force therefore 
decreases the weight of a body by 3-3 dyne per gram, i.e. by 
about 0-3%. 

T h e second inertia force, the Coriolis force, is quite different in 
type from any of the forces so far discussed. It acts only on a 
particle which is in motion (relative to the frame of reference 
considered) and depends on the velocity of that motion. It is, 
on the other hand, independent of the position of the particle 
relative to the frame of reference. In the example discussed above, 
its magnitude is Irnüv^ and its direction is away from the axis of 
rotation of the disc. It can be shown that in general the Coriolis 
inertia force on a particle moving with any velocity v„ relative to 
a frame of reference rotating with angular velocity Í1 is 

2m\n X n. 

In other words , it is perpendicular to the axis of rotation and to 
the velocity of the particle, and its magnitude is 2mi ; „ i l s i nö , 
where θ is the angle between v„ and Í1 . When the direction of the 
velocity v,, is reversed, so is that of the Coriolis force. 

Since the Coriolis force is always p e φ e n d i c u l a r to the direction 
of motion of the particle, it does no work, but simply changes the 
direction of motion of the particle without altering its velocity. 

Although the Coriolis force is usually very small on the Ear th , 
it does bring about certain specific effects. Because of this force, 
a freely falling body will not move exactly vertically, but will be 
deflected slightly eastwards. T h e deviation is very slight, how
ever. F o r example , calculation shows that the deflection in a fall 
from a height of 100 m in latitude 60° is only about 1 cm. 

T h e Coriolis force accounts for the behaviour of the Foucaul t 
pendulum, which used to serve as a demonstrat ion of the Ear th ' s 
rotation. If there were no Coriolis force, the plane of oscillation 
of a pendulum swinging near the Ear th ' s surface would remain 
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fixed (relative to the Earth) . The effect of this force is to cause 
the plane of oscillation to rotate round the vertical with angular 
velocity Ω sin φ, where Ω is the angular velocity of the Ear th ' s 
rotation and φ the latitude of the point at which the pendulum is 
suspended. 

T h e Coriolis force plays a large part in meteorological phenom
ena. F o r example, the t rade winds, which blow from the tropics 
to the equator , would blow directly from the north in the nor thern 
hemisphere and from the south in the southern hemisphere , if 
the Earth were not rotating. T h e Coriolis force causes a wes tward 
deñection of these winds. 
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§32. Simple harmonic oscillations 
W e have seen in § 13 that a one-dimensional motion of a particle 

in a potential well is periodic, i.e. is repeated at equal intervals of 
time. T h e interval after which the motion is repeated is called the 
period of the motion. If this is denoted by 7 , then the particle has 
the same position and velocity at t imes t and /-f T. 

T h e reciprocal of the period is called the frequency, and will be 
denoted by v: 

v= \IT\ 

it gives the number of t imes per second that the motion is re
peated. Its dimensions are evidently 1/sec, and the unit of 
measurement of frequency, corresponding to a period of 1 sec, 
is called t h e / z m z (Hz) : 1 H z = 1 sec^^ 

The re is obviously an infinite variety of types of periodic 
motion. T h e simplest periodic functions are the tr igonometric 
sine and cosine functions, and the simplest periodic motion is 
therefore one in which the coordinate of the particle varies 
according to 

x = A cos (ωί + α) , 

where A, ω and a are constants . Such a periodic motion is called 
a simple harmonic oscillation. 

T h e quantities A and ω have a simple physical significance. 
Since the period of the cosine is 27Γ , the period Τ of the motion is 
related to ω by 

Τ = 2πΙω. 
8 6 
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Hence we see that ω differs from ν by a factor 27Γ: 

ω = 2πν. 

The quantity ω is called the angular frequency; it is generally 
used in physics to describe oscillations, and is often called simply 
the frequency. 

Since the maximum value of the cosine is unity, the maximum 
value of the coordinate χ is A. This maximum value is called the 
amplitude of the oscillation, and χ varies f r o m — y 4 to A. 

T h e argument ω / - h a of the cosine is called the phase of the 
oscillation, and a is the initial phase (at t ime t = 0). 

T h e velocity of the particle is 

V = dxidt = —Αω sin (ω/ + a ) . 

We see that the velocity also varies harmonically but the cosine 
is replaced by a sine. If this expression is writ ten 

V = Awcos iωt-l·a-\-iπ) 

we can say that the velocity " l e a d s " the coordinate by hr in 
phase. T h e amplitude of the velocity is equal to the ampli tude of 
the displacement multiplied by the frequency ω. 

Let us now ascertain what the force acting on the particle must 
be in order to cause it to execute simple harmonic oscillations. 
T o do so, we find the acceleration of the particle in such a motion. 
We have 

w = dvldt = —Αω^ cos (ωt-l·a). 

This quantity varies in the same manner as the coordinate of the 
particle, but differs from it in phase by π. Multiplying w by the 
mass m of the particle and noticing that A cos (ωt + a ) = jc, we 
obtain the following expression for the force: 

F = —mω^x. 

Thus , in order that a particle should execute simple harmonic 
oscillations, the force acting on it must be proport ional to the 
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displacement of the particle and in the opposite direction. An 
elementary example is that of the force exerted on a body by a 
stretched (or compressed) spring; this is proportional to the 
elongation (or shortening) of the spring and is always in a direc
tion such that the spring tends to regain its original length. Such 
a force is often called a restoring force. 

T h e dependence of the force on the position of a particle in 
physical problems is very often found to be of this type. If a 
body is in a position of stable equilibrium (at the point jc = 0, say) 
and is then moved slightly in either direction from this position, 
a force F results which tends to return the body to its equilibrium 
position. As a function of the position χ of the body, the force 
F = F(x) is represented by a curve passing through the origin: 
at the point χ = 0 the force F = 0, and it has opposi te signs on 
either side of this point. Over a short range of values of x, this 
curve can be approximated by a section of a straight line, so that 
the force is proportional to the displacement x. T h u s , if the body 
undergoes a slight displacement from the equilibrium position 
and is then left to itself, its return to the equilibrium position will 
give rise to simple harmonic oscillations. 

Motions in which a body deviates only slightly from a position 
of equilibrium are called small oscillations. Thus small oscilla
tions are simple harmonic. T h e frequency of these oscillations is 
determined by the rigidity with which the body is fixed; this gives 
the relation between the force and the displacement. If the force 
is related to the displacement by 

F = -kx, 

where A : is a coefficient called the stiffness, a comparison with the 
expression for the force in simple harmonic motion, F = —mω^x, 
shows that the frequency of the oscillations is 

w = V{klm). 

It must be emphasised that the frequency depends only on the 
properties of the oscillating system (the rigidity with which the 
body is fixed, and the mass of the body), and not on the ampli tude 
of the oscillations. A given body executing oscillations of various 
amplitudes does so with the same frequency. This is a very 
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important property of small oscillations. T h e ampli tude, on the 
other hand, is determined not by the propert ies of the system 
itself but by the initial conditions of its motion, i.e. by the initial 
disturbance which causes the system to be no longer at rest. T h e 
oscillations of the system resulting from an initial dis turbance, 
after which the system is left to itself, are called natural 
oscillations. 

The potential energy of an oscillating particle is easily found by 
noting that 

dU/dx = -F = kx, 

whence 

U = ikx^ -h constant . 

Choosing the constant so that the potential energy is zero in 
the equilibrium position {x = 0), we have finally 

U = ikx\ 

i.e. the potential energy is proportional to the square of the 
displacement of the particle. 

Adding the potential energy to the kinetic energy, we find the 
total energy of the oscillating particle: 

E = imυ^-l·ikx' 

= ^ηιΑ^ω^ sin^ (ω/ + α) + ^ηιΑ^^ω^ cos^ (ωί -h a) 

or 

Ε = ^ηιΑ^ω\ 

T h u s the total energy is proportional to the square of the ampli
tude of the oscillations. It should be noted that the kinetic and 
potential energies vary as sin^(ωr-f a ) and cos^(ω/-l ·α), so that 
when one increases the other decreases . In other words , the 
process of oscillation involves a periodic transfer of energy 
between potential and kinetic and vice versa. T h e mean values 
(over the period of the oscillation) of the potential and kinetic 
energies are each equal to \E. 
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§33. The pendulum 
As an example of small oscillations, let us consider oscillations 

of a simple pendulum; this consists of a particle suspended by a 
string in the Ear th ' s gravitational field. 

Let us deflect the pendulum from its equilibrium position 
through an angle φ and determine the force then acting on it. 
T h e total force on the pendulum is mg, where m is the mass of 
the pendulum and g the acceleration due to gravity. W e resolve 
this force into two components (Fig. 32), one along the string 
and the other perpendicular to it. T h e first component is balanced 
by the tension in the string, while the second component causes 
the motion of the pendulum. This component is evidently 

F = —mg sin φ. 

F o r small oscillations the angle φ is small, and sin φ is approxi
mately equal to φ itself, so that F ~ —mgφ. Since Ιφ is the 
distance χ through which the particle moves (/ being the length of 
the pendulum), we can write 

F = -mgxjl. 

Thus we see that the stiff'ness k = mgjl for small oscillations of 
a pendulum. T h e frequency of these oscillations is therefore 

ω - ν ( ^ / / ) . 

T h e period of the oscillations is 

T = 2πlω = 2^τ\^{l|g). 

T h e length of a pendulum with period 7 = 1 sec, for the s tandard 
acceleration due to gravity given at the end of §22, is / = 24-84 cm. 

T h e manner in which the period of a pendulum depends on its 
length and the acceleration due to gravity can also be easily 
determined from dimensional considerat ions. T h e quantit ies 
available to characterise the mechanical system in question are 
m, / and g, with dimensions 

[m] = g, [/] = cm, [^] = cm/sec^. 
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F I G . 3 2 . 

The period Ί can depend only on these quantit ies. Since only m 
contains the dimension g, and the dimensions of the required 
quantity [ Γ ] = sec do not contain g, it is clear that Ί cannot 
depend on m. F r o m the two remaining quantit ies / and g we can 
eliminate the dimension cm (which is not present in Γ) by taking 
the ratio l\g. Finally, by taking the square root V{llg) we obtain 
a quantity having the dimensions sec, and it is clear from the 
foregoing argument that this is the only way in which such a 
quantity can be obtained. We can therefore assert that the period 
Τ must be proportional to \/{l¡g)\ the numerical value of the 
coefficient of proportionality can not, of course , be determined 
by this method. 

So far we have discussed small oscillations in terms of a single 
particle, but the results obtained in fact apply also to the oscilla
tions of more complex systems. As an example , let us consider 
the oscillations of a rigid body that can rotate under gravity about 
a horizontal axis. This is called a compound pendulum. 

We have seen in §28 that the laws of motion of a rotating body 
are formally identical with those of a particle, the coordinate χ 
being replaced by the angle of rotation φ, the mass by the moment 
of inertia / of the body about the axis of rotation, and the force F 
by the torque Κχ. 

In the present case the torque of gravity about the axis of 
rotation is Κχ = —mga sin φ, where m is the mass of the body, a 
the distance of its centre of gravity C from the axis of rotation 
(which passes through the point O at right angles to the plane of 
Fig. 33), and φ the angle of deflection of the line OC from the 
vertical. T h e minus sign shows that the torque Κχ tends to 
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decrease the angle φ. In small oscillations the angle φ is small, 
and therefore Kz mgaφ. Compar ing this with the express ion 
for the restoring force F = —kx in oscillations of a particle, we 
see that the stiffness coefficient k is now replaced by mga. T h u s , 
by analogy with the formula ω = V(klm), we can write down 
the following expression for the frequency of oscillations of a 
compound pendulum: 

ω= V{mgall). 

A comparison of this with the formula ω = Vigil) for the 
frequency of oscillations of a simple pendulum shows that the 
propert ies of the motion of a compound pendulum are the same 
as those of a simple equivalent pendulum of length 

/ = Uma. 

Putting / = / ο + ma^ (where I o is the moment of inertia of the 
pendulum about a horizontal axis through the centre of gravity), 
we can write the equivalent length as 

/ = αΛ-lJma. 

From this expression we can draw the following interesting 
conclusion. If we mark off OO' = / along the line OC (Fig. 33), 
and now suppose that the pendulum is suspended from an axis 
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passing through 0 \ then the equivalent length of the resulting 
pendulum is 

I' = a' -\- IJma'. 

But a' = l — a = Ijma, and therefore /' === /. T h u s the equivalent 
lengths, and therefore the periods of oscillation, are the same for 
pendulums suspended from axes at a distance / apart . 

mum 

F I G . 3 4 . 

Finally, let us consider torsional oscillations of a disc sus
pended on an elastic wire (Fig. 34). T h e elastic torque which is 
created when the wire is twisted and which tends to restore the 
disc to its original position is proportional to the angle φ of 
rotation of the disc: Κχ = —kφ, where /: is a constant coefficient 
depending on the propert ies of the wire. If the moment of inertia 
of the disc about its centre is /«, the frequency of oscillations is 

ω = V(/c / /o). 

§34. Damped oscillations 

So far we have considered the movement (including oscilla
tions) of bodies as if they occurred completely without hindrance. 
If a motion takes place in an external medium, however , the latter 
will resist the motion and tend to retard it. T h e interaction 
between a body and a medium is a complicated process which 
ultimately causes the energy of the moving body to be trans
formed into heat —the dissipation of energy, as it is called in 
physics. This process is not a purely mechanical one , and a 
detailed study of it involves other branches of physics also. 
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F r o m a purely mechanical point of view it can be described by 
defining a certain additional force which appears as a result of 
the motion itself and is in the opposi te direction to the motion. 
This force is called friction. F o r sufficiently small velocities it is 
proportional to the velocity of the body: 

Ffr = -bv, 

where ¿ is a positive constant describing the interaction be tween 
the body and the medium, and the minus sign indicates that the 
force is in the opposite direction to the velocity. 

Let us see what is the effect of such friction on an oscillatory 
motion. We shall suppose that the friction is so small that the 
resulting energy loss by the body in one period of oscillation is 
relatively small. 

T h e energy loss is defined as the work done by the friction. In 
a time dt this work, and therefore the energy loss dE, is equal to 
the product of the force Ffr and the displacement x = ν dt of the 
body: 

dE = Ffrdx = -bv^dt, 

whence 

2b 
dEldt = -bv^ = -—'imv\ 

On the above assumption that the friction is small, we can apply 
this formula to the mean energy loss over one period, replacing 
the kinetic energy imv^ by its mean value also. W e have seen 
in §32 that the mean value of the kinetic energy of an oscillating 
body is half its total energy E. T h u s we can write 

dEldt = -2γΕ, 

where y = b¡2m. W e see that the rate of decrease of the energy is 
proportional to the energy itself. 

Writing this relation in the form 

dElE = d{\ogeE) = -2y dt, 
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—2yt + constant , or finally 

95 

where EQ is the value of the energy at the initial instant (/ = 0). 
Thus the energy of the oscillations is reduced exponentially by 

friction. T h e amplitude A of the oscillations decreases with the 
energy; since the energy is proport ional to the square of the 
amplitude, we have 

A=Aoe-^K 

T h e decrease of the ampli tude is determined by the damping 
coefficient y. In a time τ = 1/γ the ampli tude decreases by a factor 
e; this is called the time constant of the decay of the oscillations. 
Our hypothesis that the friction is slight means that τ is assumed 
large in comparison with the period Τ = 2πΙω of the oscillations. 
T h e small quanti ty Γ/τ is called the logarithmic damping 
decrement. 

F I G . 3 5 . 

Figure 35 shows a graph of the displacement as a function of 
time for the damped oscillations 

x = A cos {ωt-\-a) 

= AQC'^^ COS (ωί + α). 

T h e broken lines show the decrease of the amplitude. 
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Friction also affects the frequency of the oscillations. By 
retarding the motion it increases the period, i.e. decreases the 
frequency of the oscillations. When the friction is slight, however , 
this change is very small, and has therefore been ignored above ; it 
may be shown that the relative change in frequency is proport ional 
to the square of the small quantity γ /ω. When the friction is 
sufficiently great, however , the retardation may be so consider
able that the motion is damped without oscillation; this is called 
aperiodic damping. 

§35. Forced oscillations 
In any actual oscillating system, friction processes of some 

kind always occur. T h e natural oscillations which result from the 
action of an initial dis turbance are therefore damped in the course 
of time. 

In order to produce undamped oscillations in a system it is 
necessary to compensa te the energy losses due to friction. This 
may be done by sources of energy external to the oscillating 
system. A simple case is the action on the system of a variable 
external force Fext which varies harmonically in t ime: 

Fext = Fo cos ω/, 

with some frequency ω (the frequency of the natural free oscilla
tions of the system will now be denoted by ωο). U n d e r the action 
of this force, oscillations occur in the system, at the frequency ω 
of the variation of the force; these are called forced oscillations. 
T h e motion of the system will then be , in general, a superposit ion 
of both oscillations: the natural oscillations with frequency ωο, 
and the forced oscillations with frequency ω. 

T h e natural oscillations have already been discussed; let us now 
consider the forced oscillations, and determine their amplitude. 
We write these oscillations in the form 

x = Bcos {ωt-ß), 

where Β is the amplitude and β some as yet unknown phase 
difference between the external force and the oscillations which 
it causes . We have written β with a negative sign, i.e. as a lag in 
phase , because it will be found below that this is what in fact 
occurs . 
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The acceleration w of a body executing forced oscillations is 
determined by the simultaneous action of three forces: the 
restoring force —kx, the external force Fext, and the friction 
Ffr = —bv. H e n c e 

mw = —kx — bv-\- Fext. 

Dividing this equation by the mass m, using the relation kim =ωο^, 
and again putting bjm = 2γ, we have 

w = —ωο^χ — 2yv + F^.^Jm. 

We shall now use a convenient graphical method of represent
ing the oscillations, based on the fact that x = Β cos φ (where φ 
is the phase of the oscillation) may be geometrically regarded in 
an auxiliary vector diagram as the projection on a horizontal axis 
of a radius vector of length Β at an angle φ to this axis. [To avoid 
misunderstanding it should be stressed that these " v e c t o r s " are 
not related to the concept of a vector as a physical quantity.] 

F I G . 3 6 . 

Each term in the above equation is a periodically varying 
quanti ty; the frequency ω is the same for each term but the phases 
are different. Let us consider, for example , the instant t = 0, when 
the phase of the external force F g x t = FQ COS ωί is zero , and so 
the quantity F^^Jm is represented by a horizontal vector of 
length Fo/m (Fig. 36). T h e quanti ty ωο^χ = ω^^Β cos(ωt — ß) oscil
lates with a phase lag of β; it is represented by a vector of length 
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B = 
λ/[{ω'-ω,ψ-l·4y'ωη' 

T h e same diagrams can also be used to determine the phase 
diff'erence β; the expression for it will not be written out here , but 
it may be noted that the angle of lag of the oscillations of χ relative 
to the external force is acute or obtuse according as ω < ω» or 
ω > ωο. 

We see that the amplitude of the forced oscillations is pro
portional to that of the external force Fo, and also depends on 
the relation between the frequency ω of this force and the natural 
frequency ωο of the system. T h e amplitude of the oscillations 
reaches its maximum value when these two frequencies are 
equal (ω = ωο); this is called resonance. T h e maximum value is 

^max = Fo/2mωoγ, 

and is inversely proportional to the damping coefficient y. F o r this 

ωο^Β turned clockwise through an angle β relative to the force 
vector. T h e acceleration w has (as we have seen in §32) an 
amplitude ω^Β and the opposite sign to the coordinate Λ:; it is 
therefore represented by a vector in the direction opposi te to x. 
Finally, the velocity υ has amplitude ωΒ and leads jc by ivr in 
phase ; the quantity 2yv is represented by a vector of length 2γωΒ 
perpendicular to the vector JC. 

According to the equation 

^ e x t / ^ = w -h ωο^χ -h 2yv, 

the oscillation of FexJfn must equal the sum of the oscillations of 
the three terms on the right-hand side. In the graph this means 
that the sum of the horizontal projections of these three vectors 
must equal Fo/m. F o r this to be so, the vector sum of these 
vectors must evidently be equal to the vector F^^Jm. T h e diagram 
(which gives separately the cases ω > ωο and ω < ωο) shows that 
this is t rue if 

(2yωBγ + Β\ω' - ωο^)^ = (Fo/m)^. 

Hence we find the required amplitude of the oscillations: 

Fo/m 
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2 / ω Β 

F I G . 3 7 . 

T h e origin of the amplification of the oscillations by resonance 
may be unders tood by considering the relation between the 
phases of the external force Fext and the velocity v. When ω ωο 
there is a difference of phase , and therefore the force Fext is in the 
opposite direction to the velocity during a certain Traction of each 
period, and there is then a tendency for the motion to be retarded 
instead of accelerated. At resonance , however , the phases of 
the force and the velocity are the same (see the vector diagram. 
Fig. 37); thus the force always acts in the direction of the motion 
and continually ' ' pu shes" it. 

N e a r resonance (i.e. when the difference |ω —ωο| is small in 
comparison with the resonance frequency ωο), the formula for 

reason the friction in the system cannot be neglected at reson
ance, even if it is slight. 

It is interesting to compare the value ^^ax with the static dis
placement ^sta that the body would have under a constant force 
Fo. This displacement can be obtained from the general formula 
for Β by putting ω = 0: B^ta = ΡοΙηιω^^, T h e ratio of the resonance 
displacement to this static displacement is 

^max/^sta = ωο/2γ. 

We see that the relative increase in the ampli tude of the oscilla
tions in resonance (as compared with the static displacement) is 
given by the ratio of the frequency of natural oscillations to the 
damping coefficient. Fo r systems with small damping this ratio 
may be very large. This explains the very great importance of the 
phenomenon of resonance in physics and technology. It is widely 
utilised in order to amplify oscillations, and always avoided if the 
resonance may cause an undesirable increase in the oscillations. 
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the amplitude of the forced oscillations can be simplified. Putt ing 
in the denominator ω^ —ωο̂  = (ω + ω())(ω —ωο), we can approxi
mately replace the sum ω 4- ωο by 2 ω ο , and also replace ω by ωο 
in the term A-foy^. T h e result is 

2Αηωον [ ( ω - ω ο ) 2 + γ2]· 

This formula may also be written 

Y ^ M A X B = 
ν [ ( ω - ω ο ) 2 + / ] ' 

where B^^ax = Fjlmwoj is the maximum value of the ampli tude at 
resonance. 

Figure 38 shows the resonance curves of ampli tude as a 
function of frequency in accordance with this formula, for various 
values of the damping coefficient γ ; the ordinate is the ratio 
^ / ^ M A X - So long as the absolute magnitude of the difference 
ω — ωο is small in comparison with γ, the amplitude Β does not 
differ greatly from its maximum value; the amplitude begins to 
decrease considerably when | ω — ωοΙ ~ Y . F o r this reason the 
"wid th" of the resonance curve is said to be of the order of y. 
T h e height of the maximum (for given F«) is inversely propor
tional to γ . Thus , the smaller the damping, the sharper is the 
resonance maximum, and the narrower is the resonance curve. 

It has been mentioned above that the motion of an oscillating 
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F I G . 3 9 . 

As the phases of the vibrations vary with t ime, these vectors 
rotate uniformly with angular velocities ω and ωο', during one 
period Τ a vector makes one rotation, i.e. turns through an angle 
27Γ, and its angular velocity is ΙττίΤ, which is jus t the angular 
frequency. T h e total oscillation is given by the geometric sum of 
the two vectors , the vector C . This vector , unlike A and B, has 
a length which varies with time, since the angle be tween the 
vectors A and Β changes owing to the difference in the angular 
velocities ω and ωο. T h e length of C will evidently vary between 
Cmax = A-\-B, when the vectors A and Β are in the same direction, 
and Cmin=" \A—B\, when they are in opposi te directions. This 
variation occurs periodically with frequency Ω, the latter being 
the relative angular velocity of rotation of the vectors A and B. 

In the case considered, where the frequencies ωο and ω are 
almost equal, the vectors A and Β rotate rapidly while at the same 
time having only a slow relative rotation. T h e variation of the 
resultant vector C may be regarded as a uniform rotation with 
the same frequency ωο ~ ω (neglecting the difference be tween 
ωο and ω) together with a slow change in its length (with frequency 
Ω). In other words , the resultant motion is an oscillation with a 
slowly varying amplitude. 

The periodic variation of the resultant amplitude in the super
position of oscillations with neighbouring frequencies is called 

system under the action of a periodic external force is a super
position of forced and natural oscillations. Neglect ing the slight 
damping of the natural oscillations, we have a superposit ion of 
two simple harmonic oscillations, with frequencies ω and ωο and 
some amplitudes A and B. N e a r resonance , the frequencies ω 
and ωο are nearly equal, i.e. the difference Ω = |ω —ωο| is small 
in comparison with ω and ωο. Let us find the nature of the result
ing motion. T o do so, we use a vector diagram in which each of 
the oscillations is represented by a vector {A and Β in Fig. 39). 
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beats, and Ω is called the beat frequency. Figure 40 shows the 
beats w h e n y 4 = β . 

F I G . 4 0 . 

§36. Parametr ic resonance 
Undamped oscillations can be caused not only by a periodic 

external force but also by a periodic variation of the parameters 
of the oscillating system. This is called parametric resonance. As 
an example, we may consider the build-up of the oscillations of 
a swing by a person who rhythmically stands up and sits down 
and thereby periodically changes the position of the centre of 
gravity of the system. 

T o elucidate the mechanism of this method of causing oscilla
t ions, let us take the simple example of a pendulum whose length 
can be varied by pulling and releasing a string on a pulley (Fig. 
41). Let us suppose that , at each passage through the equilibrium 
(vertical) position, the pendulum is raised by the external force 
F through a short vertical distance a (small compared with the 
length / of the pendulum) and, at each ext reme position, the string 
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is released the same distance a. Dur ing each period, therefore, 
the pendulum is twice lengthened and shortened, and so the 
frequency of the periodic variation of the parameter (the length of 
the pendulum) is twice that of the natural oscillations. 

Since the string is lengthened when the pendulum is deflected, 
it will descend a distance αοο^φ^ (where φο is the angular 
amplitude of the oscillations of the pendulum), which is less 
than the height a through which it rises when the string is raised. 
In each raising and lowering the external force acting on the 
string will do an amount of work 

mga (1 - cos Φο) ^ i^gaφo^ 

against gravity (since φο is assumed small, cos φο ~ 1 — έφο^). In 
addition, the external force F does work against the centrifugal 
force which tightens the string. In the lowest position this work 
is mvo^H (where VQ is the maximum velocity of the pendulum) 
and in the ext reme positions of the pendulum it is zero , since the 
velocity is zero. Thus the total work done by the external force 
in one period of oscillation of the pendulum is 

A = 2(imgaφQ^-l· mvo^a/l). 

But νο = Ιφοω, where ω = V{gll) is the frequency of the oscilla
tions of the pendulum; thus 

A = 6{all) ,imvo^. 

We see that the work done by the external force on the pendu
lum is positive and is proportional to the energy of the pendulum. 
This energy will therefore increase steadily, receiving in each 
period a small increment proportional to the energy and to the 
quantity ύί//. 

This is the mechanism of parametr ic resonance . A periodic 
variation of the parameters of an oscillating system (with a period 
twice the natural frequency of the system) may bring about a 
steady increase in its mean energy E , the rate of increase being 
proportional to E: 

dEldt = 2KE, 
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where κ is a (small) constant . This is a relation of the same form 
as for damped oscillations, except that the derivative dEldt is 
positive instead of negative. This means that the energy (and 
therefore the amplitude) of the oscillations increases exponent i
ally with time. 

In reality, of course , there is always some friction which 
causes damping of the oscillations. Consequent ly , in order for 
parametric resonance build-up of oscillations to occur, the 
amplification coefficient κ must exceed a certain minimum value, 
namely the damping coefficient due to friction. 

We have discussed the production of oscillations in a system by 
periodic external interaction. There are, however , oscillatory 
systems in which oscillations are caused not by a periodic force 
but by a steady source of energy, which compensates the energy 
losses in the system that bring about the damping of the oscilla
tions. One example of such a system is a clock, in which a 
compressed spring or raised weights act as the source of energy. 
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§37. Atoms 
We shall not give here a detailed account of the problems of 

atomic physics, but simply describe some of the basic facts con
cerning the structure of matter which will be needed subsequently. 

All bodies are made up of a fairly small number of simple 
substances, the chemical elements. T h e smallest particle of 
each element is an atom of that element. 

The masses of the atoms are extremely small. It is therefore 
more convenient to measure them in special units, and not in 
grams. It would be natural to take as the unit the mass of the 
lightest a tom, that of hydrogen. However , the precise s tandard 
of atomic weights is customarily taken not as the a tom of hydrogen 
but as that of oxygen, which is more convenient for chemical 
purposes. T h e oxygen atom is approximately 16 times heavier 
than the hydrogen atom, and the unit of atomic weight is taken 
as one-sixteenth of the mass of the oxygen a tom; this definition 
will be slightly refined in §38. T h e mass of the atom of any 
element expressed in these units is called the atomic weight 
of the element, and is usually denoted by A. T h e atomic weight 
of hydrogen is 1-008. 

The mass of an atom in grams is proportional to its atomic 
weight. It is therefore clear that the number of a toms in a quanti ty 
of any element whose mass in grams is numerically equal to 
the atomic weight of that element (called a gram-atom of the 
element) is the same for every element. This is caWtd A vogadro's 
number; its value is 

yVo = 6-02 X 1023. 

T h e mass of an atom having atomic weight y 4 is clearly 

m 4 = / i / i V o = 1-66 X 1 0 - 2 4 ^ g. 

1 0 5 
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Although the a tom is the smallest particle of an element , it 
has itself a complicated structure. An atom consists of a relatively 
heavy positively charged nucleus and a number of lighter 
negatively charged particles moving round it, the electrons, 
which form the electron shell of the atom. Different a toms have 
different nuclei, but all electrons are identical. 

T h e mass of an electron is so much less than that of a nucleus 
that practically all the mass of an a tom is concentra ted in its 
nucleus. T h e lightest nucleus is that of hydrogen, called a 
proton, which is approximately 2000 times (more precisely, 
1837 times) heavier than the electron. T h e absolute mass of 
the electron is 

m = 9-11 X 10 -28 g. 

At the same time, the nucleus occupies only a negligible part of 
the volume of the atom. T h e radii of a toms, i.e. the radii of the 
regions round the nuclei in which the electrons move, are of the 
order of 10"« cm; the radii of the nuclei are tens of thousands 
of times smaller, between 10"^^ and 10"^^ cm. 

T h e charge on an electron is in absolute value 

e = 4-80 X 10-10 C G S E unit of charge 
= 1 ·60χ 10-i»C. 

It is often necessary to consider the electron charge multiplied 
by Avogadro ' s number , i.e. the charge on one "gram-electron". 
This product is called the faraday: 

F = eNo = 9'65xWC, 

An atom as a whole is electrically neutral , its total charge 
being zero. In other words , the positive charge on the nucleus 
is exactly compensated by the negative charge on the surrounding 
electrons. This means that the charge on the nucleus is always 
an integral multiple of the charge on an electron. We can say that 
the magnitude of the charge on the electron is an elementary 
charge; the charge on any particle existing in Na tu re is a multiple 
of the electron charge. This is one of the most fundamental 
physical properties of matter. 

T h e charge on a nucleus, expressed in units of the electron 
charge, is called the atomic number of the element and is usually 
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denoted by Z . Since the charge on the nucleus is jus t balanced 
by that on the electrons, the number Ζ is evidently also the 
number of electrons in the electron shell of the atom. All the 
properties of a toms that appear under ordinary condit ions are 
determined by their electron shells, including, for example , the 
chemical and optical propert ies of matter . It is therefore clear 
that the atomic number is a fundamental characterist ic of the 
atom, which to a considerable extent determines its propert ies . 
T h e arrangement of the elements in Mendeleev ' s periodic 
system is simply an arrangement in order of increasing atomic 
number, the latter being the same as the number giving the 
position of the element in the table. 

T h e interaction forces which determine the s t ructure of the 
atom are mainly those of electrical interaction of the electrons 
with the nucleus and with one another: the electrons are at t racted 
by the nucleus and repelled by one another . Other forces (mag
netic forces) are of relatively minor importance in the atom. T h e 
charge on the nucleus, and therefore the electric field in which 
the electrons move, are determined by the atomic number , thus 
again, showing the fundamental importance of this number in 
governing the propert ies of a toms. 

T h e gravitational interaction plays no part at all in a toms. T h e 
energy of the electrical interaction, for example , be tween two 
electrons at a distance r apart is e^lr, and that of the gravitational 
interaction is Gm^lr; the ratio of these two quantit ies is 

Gm^le^ = 2-3 x 10"^^ 

This number is so small that it is pointless to speak of gravitational 
interaction in the atom. 

T h e propert ies of a toms can in no way be described by means 
of classical mechanics , which is unable to explain either the 
s tructure of the atom or even the fact that it exists as a stable 
configuration. Classical mechanics is entirely inappHcable to 
the motions of particles of such small mass as electrons in such 
small regions of space as are occupied by a toms. Atomic phenom
ena can be unders tood only from the laws of a quite different 
mechanics called quantum mechanics . 

Unde r various external interact ions, an atom may lose one or 
more electrons from its electron shell. W e then have an atomic 
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1 eV = 4-80 X 10-10 X 1/300 erg 
= 1-60 X 10-12 erg. 

T h e ionisation potentials of a toms are measured in electron-
volts. They range from 3-89 eV, the smallest (for caesium), to 
24-6 eV, the largest (for helium). T h e ionisation potential of 
the hydrogen atom is 13-6eV. 

If we consider the ionisation potential as a function of atomic 
number, we see that this function has a remarkable periodic form. 
It increases more or less steadily in each period of Mendeleev ' s 
table, reaching its greatest value for a noble-gas a tom, and then 
drops sharply at the beginning of the next period. This is one of 
the principal manifestations of the periodic propert ies of a toms, 
which gave the periodic system its name. 

T h e ionisation potential represents the binding energy of the 
outer electrons in the atom. T h e inner electrons, moving deep 
in the shell, have considerably higher binding energies. T h e 
energy which would be needed to remove the deepest electrons 
from the electron shell reaches 10'* or 10^ eV in heavy atoms. 

As well as positively charged ions, negative atomic ions can 
also exist, in which an extra electron is a t tached to the atom. 
However , by no means all isolated a toms are capable of attaching 
an electron to form a stable system, i.e not all a toms have an 
affinity for an extra electron. Only the halogen a toms ( F , CI, Br, 
I), hydrogen and the atoms of elements of the oxygen group 
(O, S, Se, Te) can form negative ions. These elements have 
different affinities for an electron; it is greatest for the halogens 
and least for hydrogen, where the binding energy in the negative 
ion is only about 0· 1 eV. 

particle which is not electrically neutral but charged, a positively 
charged ion. T h e energy needed to remove one outer electron 
from the atom is called the ionisation potential of the atom. 

Energies in atomic phenomena are usually measured in a 
special unit, since the erg would be too large for this purpose . 
T h e unit employed is the energy gained by an electron in t ravers
ing a potential difference of one volt in an electric field, and is 
called an electron-volt (eV). Since the work done by the electric 
field is equal to the product of the charge and the potential 
difference, and 1 volt is 1/300 C G S E unit of potential, we have 
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TTO AVOID MISUNDERSTANDING IT SHOULD BE EMPHASISED THAT THIS REFERS ONLY TO 
THE ISOTOPES FOUND IN NATURE. OTHER ISOTOPES MAY BE PRODUCED ARTIFICIALLY, BUT 
THEIR NUCLEI ARE UNSTABLE AND DISINTEGRATE SPONTANEOUSLY. 

Ions are usually denoted by the symbol of the chemical element 
with indices -f or — equal in number to the charge on the ion: 
H"^, C r , e tc. Sometimes dots and primes are used: H*, C I ' . 

§38. Isotopes 
T h e nuclei of a toms are composi te s t ructures , in general 

consisting of many particles. Thei r const i tuent parts are protons 
(hydrogen nuclei) and neutrons, which are particles whose mass 
is almost equal to that of the proton but which differ from protons 
in having no electric charge. T h e total number of protons and 
neutrons in the nucleus is called its mass number. Since the 
charge on the nucleus is determined by the protons present , its 
value in units of the elementary charge e is equal to the number 
of protons; that is, the number of protons in the nucleus is equal 
to the atomic number Z . T h e remaining particles in the nucleus 
are neutrons. 

T h e particles in the nucleus are held together by specific 
forces, which are not electrical. T h e s e forces are extremely 
strong, and the binding energies of the particles in the nucleus 
are tens of millions of electron-volts , and so are very large in 
comparison with the binding energies of the electrons in the 
atom. F o r this reason the atomic nuclei undergo no internal 
changes in any phenomena which are not of nuclear origin, and 
behave simply as particles of given mass and charge. 

W e have already mentioned that the propert ies of an a tom are 
determined mainly by the charge on the nucleus. T h e mass of 
the nucleus is of relatively minor importance. This fact is clearly 
evident in a toms with the same atomic number but having nuclei 
of different masses . It is found that the a toms of a given chemical 
element are not all identical; though they have the same number 
of electrons, their nuclei may differ in mass while having the 
same charge. Such varieties of a given element are called isotopes 
of the element. All the isotopes of an element are chemically 
identical, and their physical propert ies are also very similar. 
T h e number of isotopes existing in N a t u r e is different for different 
elements, varying from one (as in Be, F , N a , Al, etc.) to ten in tin.+ 
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T h e elements found on the Ear th are mixtures of various iso
topes in definite proport ions. T h e atomic weights given in a 
table of chemical elements are the mean weights of the a toms 
in these mixtures (often referred to as chemical atomic weights) 
and not the exact weights of any particular isotopes. T h e atomic 
weights of the isotopes are very close to whole numbers , the 
mass numbers , differing from them only by a few parts in a 
hundred or even a few parts in a thousand. T h e mean (chemical) 
atomic weights, on the other hand, of course need not be whole 
numbers . 

I t is therefore necessary to refine the definition of the unit of 
atomic weight as one-sixteenth of the atomic weight of oxygen, 
given in §37. Oxygen has three isotopes: ^^O, and (The 
atomic weight, or more precisely the mass number , of an isotope 
is customarily writ ten as an index to the left of the chemical 
symbol of the element.) T h e most abundant of these isotopes is 
i^O; the isotopes and ^̂o occur in the natural mixture only 
in amounts of 0-04 and 0-2% respectively. Although these are 
relatively small quantit ies, they are important in a precise 
definition of atomic weights. 

T h e mean atomic weights of the natural mixtures of isotopes 
are usually defined relative to the atomic weight of natural 
oxygen, taken as exactly 16; this is sometimes called the chemical 
scale of atomic weights. In order to define the precise atomic 
weights of individual isotopes in nuclear physics , it is natural to 
use the atomic weight of one particular isotope as basis ; the 
atomic weight of the isotope ^^O is taken as 16, and the unit of 
this scale (the physical scale) is 0-027% less than that of the 
chemical scale. 

T h e use of two scales of atomic weights involves some in
convenience, and it has therefore been recommended that a 
single new scale should be employed, in which atomic weights 
are defined relative to that of the carbon isotope ^^C, taken as 
12. This change means only a very slight increase (by 0-0043%) 
in the ordinary chemical atomic weights. 

T h e first element in the periodic system, hydrogen, has two 
natural isotopes. A s well as the principal isotope of atomic 
weight 1, there is an isotope of weight 2 ; natural hydrogen 
contains only one a tom to about 6000 Ή atoms. T h e " h e a v y " 
isotope of hydrogen is usually denoted by a separate symbol D 
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and called deuterium; its nucleus is called a deuteron. Since the 
ratio of masses of the two isotopes of hydrogen is 2, which is 
comparatively large, the difference be tween their physical 
properties is greater than for isotopes of other e lements , where 
the relative mass difference is considerably less. F o r example , 
"heavy wa te r " D g O , containing the heavy isotope deuter ium, 
freezes at 3-8°C instead of 0°C, and boils at 101-4°C instead 
o f100°C. 

It may also be mentioned that the next element, heHum, Hke-
wise has two isotopes, ^He and ^He. T h e isotope ^He is by far 
the more abundant , a toms of ^He being present in natural helium 
only to the extent of 1 to about 10^ a toms of ^He. T h e isotope 
^He can, however , be artificially prepared in large quantit ies by 
the methods of nuclear physics. 

§39. Molecules 
A toms of different elements can combine with one another to 

form molecules. T h e forces of interaction be tween a toms which 
bring about the formation of molecules (called chemical inter
action), Uke the forces acting within the a tom itself, are funda
mentally electrical. But the formation of molecules, like the 
structure of a toms, is a quantum phenomenon , and cannot be 
explained in terms of classical mechanics . H e r e we shall describe 
only the basic propert ies of this interaction, without investigating 
its nature. 

T h e simplest molecule is a diatomic molecule, consisting of two 
like or unHke atoms. T h e interaction of a toms which causes the 
formation of such a molecule is described by a potential energy 

F I G . 4 2 . 
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Molecu le /·() i/o 

H2 0-75 4-5 
1-2 5-1 

C\, 2 0 2-5 
1 1 7-4 

A diatomic molecule may be likened to a dumb-bell of length 
Γο. Polyatomic molecules have a more complex form. Figure 43 
shows the positions of the atomic nuclei in some triatomic 
molecules, the distances being shown in A N G S T R O M S . Some of 
these form triangles (water H 2 O and ozone O3), while in others 
the atoms are collinear (carbon dioxide CO2 and hydrocyanic 
acid H C N ) . In §40 examples of still more complicated molecules 
will be given. 

We see that the distances between the nuclei in molecules are 
of the order of 10"^ cm, like the dimensions of the a toms them
selves. Thus the atoms in a molecule are close together, and it 

having the form shown diagrammatically in Fig. 42. In this 
diagram the potential energy U of the interaction be tween the 
two atoms is plotted as a function of the distance r be tween them 
(more precisely, of the distance between their nuclei). This 
function has a fairly deep and sharp minimum at a certain point 
r = r Q . At smaller distances the curve rises very steeply; this 
region corresponds to a strong repulsion between the a toms, due 
essentially to the Coulomb repulsion between the nuclei as they 
approach. At large distances the a toms attract each other. 

T h e distance corresponds to a stable equilibrium position of 
the nuclei in the molecule. In reality, the nuclei do not occupy 
exactly these positions, but oscillate about them; the ampli tude 
of these oscillations, however , is usually small. T h e depth ¿7o 
of the potential well represents the strength of the bond between 
the atoms in the molecule; strictly speaking, the precise value of 
the binding energy needed to separate the a toms is slightly 
different from i/o because of the energy of the oscillations of 
the nuclei. 

T h e table below gives A S an illustration the values of ro in 
A N G S T R O M S (1 Á = IQ-^cm) and U^'m electron-volts for some 
diatomic molecules. 
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In some molecules the outer parts of the electron shells are 
rearranged so that there are fewer electrons on average round 
some nuclei and more round others than in the neutral a toms; 
such molecules may be regarded as consisting of ions (for 
example, the KCl molecule may be regarded as consisting of 
the positive ion and the negative ion Cl~). In other cases 
(e.g. H2, O2, HCl) the atoms in the molecule remain on average 
electrically neutral. This difference, however , is only quanti tat ive, 
and various intermediate cases be tween the two limiting ones 
mentioned are possible. 

A characterist ic property of the chemical interaction of a toms 
is that it can be saturated. This means that the a toms which 
combine with one another because of this interaction cease to 
be able to interact in the same way with other a toms. 

Different molecules also interact; this interaction is called 
the van der Waals interaction, to distinguish it from the chemical 
interaction of a toms which leads to the formation of molecules. 

T h e interaction of molecules can not in general be represented 
simply by a curve U = U(r) as was done above for a toms, since 
the relative position of the molecules is described by a larger 

is therefore, strictly speaking, impossible to distinguish the 
electron shells of the individual a toms in a molecule. Although 
the internal regions of the electron shells are not much changed 
when atoms combine to form a molecule, the motion of the outer 
electrons may be considerably modified, and these electrons are 
as it were shared by the a toms. 
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number of parameters : as well as the distance r be tween the 
molecules, their relative orientation is important. But if the 
interaction between molecules is regarded as being averaged 
over all possible orientat ions, it can again be represented by such 
a curve. This curve resembles the curve of interaction be tween 
atoms in a molecule, in that at large distances all molecules 
attract one another , and at small distances repel one another . 
T h e forces of attraction be tween molecules decrease rapidly 
with increasing distance be tween them. T h e forces of repulsion 
between molecules increase even more rapidly as they approach, 
so that approaching molecules behave like solid bodies and do 
not interpenetrate. T h e depth of the minimum on the van der 
Waals interaction curve is very small, being only some tenths or 
even hundredths of an electron-volt (see §68), whereas the 
depth of the potential well on the curve of chemical interaction 
is several electron-volts. 

Another important difference between the two kinds of inter
action is that the van der Waals forces, unlike the chemical forces, 
do not exhibit saturation. T h e van der Waals interaction exists 
between all molecules, so that if two molecules are brought 
together by it they continue to attract other molecules. T h e 
forces of molecular attraction therefore do not lead to the forma
tion of "supermolecules" , but merely assist the general tendency 
of all molecules to approach one another. This tendency exists 
when matter enters a condensed (liquid or solid) state. 
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§40. Symmetry of molecules 

T h e concept of symmetry plays a fundamental part in physics. 
Symmetry is one of the most important characterist ics of a given 
physical object, and in many cases it has a decisive effect on the 
behaviour of the object. 

We shall begin by considering the possible symmetr ies of indi
vidual molecules. T h e symmetry propert ies consist of various 
symmetry elements, which we shall first of all define. 

A molecule is said to have an axis of symmetry of order η if it 
is left unchanged in position by a rotation through an angle ΙπΙη 
about that axis, where η is any integer: η = 2, 3 , 4, . . . ; such an 
axis is usually denoted by the symbol C„. F o r example , if a 
molecule has an axis of symmetry of order 2, this means that the 
molecule is unchanged in position by a rotation through 180°; that 
is, each atom y 4 , 5 , . . . in the molecule cor responds to another 
atom A\ B \ . . . of the same kind, located as shown in Fig. 44 
relative to A, B,,.. and the axis. If the molecule has an axis of 
symmetry of order 3, it is left unchanged in position by rotat ions 
through 120° and 240°; for each a tom A, the molecule also con
tains two atoms of the same kind, A' and A", situated as shown 
in Fig. 45 . 

A molecule has a plane of symmetry if it is left unchanged in 
position on reflection in that plane; this symmetry element is 
denoted by σ. This means that for each atom A in the molecule 
there is another a tom A' of the same kind lying on the perpendic
ular from A to the plane and at the same distance on the other 
side of the plane (Fig. 46). 

In addition to reflection in a plane, we can define "reflection in 
a point" , giving a new symmetry element, a centre of symmetry 
or centre of inversion, denoted by /. If a molecule has a centre of 
symmetry at some point / (Fig. 47), each atom^^ corresponds to 

1 1 5 
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another atom / Í ' of the same kind, lying on the line j o i n i n g ^ and / 
and at the same distance on the other side of /. 

Finally, there is a symmetry element called a rotary-reflection 
axis of order n, denoted by 5„. A molecule possesses this sym
metry if it is unchanged in position by rotation through an angle 
2πΙη about an axis followed by reflection in a plane perpendicular 
to that axis. T h e order AI of a rotary-reflection axis can only be 
even; if η is odd, say /i = 3 , then by repeating the rotary reflection 
6 times we easily see that the axis Sn is in fact a combinat ion of 
two independent symmetry elements , an axis of symmetry C3 
and a plane of symmetry σ perpendicular to it. If a molecule has 
a rotary-reflection axis of order 4, for example , then each a tom 
A corresponds to three other a toms A \ A " , A'" of the same kind, 
arranged as shown in Fig. 48 . T h e presence of such an axis 
necessarily involves the presence of a simple axis of symmetry , 
of half the order (in this case , C2). 

[It may be noted that, as is easily seen, a rotary-reflection axis 
of order 2 is equivalent to a centre of symmetry at the point where 
the axis meets the plane of reflection. Thus 52 is not a new 
symmetry element.] 

A 

A'«-Η Η - · Α 
B' · ^ , -^" · Β 

A V ^ 
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These are the elements of which the symmetry of a molecule 
may be composed. T h e following are examples of the way in 
which various combinations of these elements occur to determine 
the symmetry of a molecule. 

T h e water molecule H 2 O forms an isosceles triangle (Fig. 49). 
Its symmetry consists of an axis of order 2 (the altitude of the 
triangle) and two mutually perpendicular planes of symmetry 
passing through this axis C2. 

F I G . 4 9 . F I G . 5 0 . 

T h e ammonia molecule N H 3 forms an equilateral triangular 
pyramid with the Ν a tom at the vertex and the Η a toms at the 
corners of the base (the pyramid is actually very flat, its altitude 
being only about \ of the edge of the base). T h e symmetry con
sists of a vertical axis of order 3 (Fig. 50) and three planes of 
symmetry passing through this axis at angles of 60°, each plane 
passing through one of the Η a toms. 

A still greater number of symmetry elements occurs in the 
benzene molecule CßHß, whose a toms lie in a plane and form a 
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regular hexagon (Fig. 51). The plane containing the a toms is 
obviously a plane of symmetry , and the molecule also has an 
axis of symmetry of order 6 passing through the centre of the 
hexagon at right angles to the plane. T h e centre of the hexagon 
is a centre of symmetry. The re are also six axes of order 2, three 
of which join diametrically opposite a toms while the o ther three 
bisect opposite sides of the hexagon; one axis of each kind is 
shown in Fig. 5 1 . Finally, the six planes through these axes Cz 
at right angles to the plane of the diagram are a further six planes 
of symmetry. 

F I G . 5 1 . F I G . 5 2 . 

Let US consider also the methane molecule C H 4 , which is a 
regular te t rahedron (a solid with four equal faces, each an 
equilateral triangle): the Η atoms are at the four vert ices, and the 
C atom at the centre (Fig. 52). This molecule has four axes of 
symmetry of order 3, each passing through one vertex and the 
centre of the te t rahedron. Three rotary-reflection axes of sym
metry of order 4 pass through the midpoints of opposi te edges 
of the te trahedron. Finally, there are six planes of symmetry , each 
passing through one edge and the midpoint of the opposi te edge. 
Figure 52 shows one of each of these symmetry elements . 

§41. Stereoisomerism 
There is a curious effect which depends on the presence or 

absence of a certain degree of symmetry in the molecule. If a 
sufficiently asymmetr ic molecule undergoes a mirror reflection, 
the resulting molecule is similar to the ñrst , but not identical 
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with it. T h e molecule C H C l B r I is of this type , for example ; it is 
obtained by replacing three Η a toms in the methane molecule 
C H 4 by three different a toms CI, Br and I. Figure 53 shows two 
such molecules which are mirror images in a vertical plane. It is 
obvious that these two molecules cannot be made to coincide 
by any rotation in space, and in this sense they are not identical. 

T w o such similar but not identical molecules derived from each 
other by reflection are called stereoisomers. O n e isomer is said 
to be right-handed and the other left-handed. 

F I G . 5 3 . 

By no means all molecules can have s tereoisomers . T h e 
existence of these depends on the symmetry of the molecule. F o r 
example, if a molecule has even one plane of symmetry , its mirror 
image is identical with it, and they differ only by a rotat ion about 
some axis. H e n c e , for example, there are no s tereoisomers , not 
only of the highly symmetr ic molecule C H 4 , but even of the much 
less symmetric molecules C H 3 C I and CHaClBr , which still 
possess a plane of symmetry. 

Similarly, molecules which have a centre of symmetry , or any 
rotary-reflection axis, have no s tereoisomers . 

Stereoisomers are completely identical in almost all physical 
propert ies. T h e difference be tween them appears , in particular, 
in certain phenomena which occur when Ught passes through 
solutions of these substances (for which reason s tereoisomers are 
also called optical isomers). 

The difference be tween s tereoisomers has an important effect 
when they react with other molecules which are also asymmetr ic . 
T h e reaction be tween right-handed isomers of the two sub
stances occurs in the same way as that be tween their left-handed 
isomers: the two processes differ only by a mirror reflection and 
so must be identical in physical propert ies . Similarly, the react ion 
of a right-handed isomer with a left-handed one is the same as 
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that of a left-handed isomer with a right-handed one. But the 
course of the reaction in the two latter cases differs considerably 
from that in the two former cases . This is the principal difference 
between stereoisomers. 

If asymmetr ic molecules are formed in a chemical react ion 
be tween two symmetr ic substances (not having s tereoisomers) , 
then, since the initial substances are unchanged by reflection, the 
same must be true of the product . T h e reaction therefore yields a 
mixture of equal quantities of the two isomers. 

§42. Crystal lattices 

T h e fundamental property of crystals is that their a toms are 
regularly arranged. It is this symmetry of the internal arrangement 
of the a toms in crystals which we shall discuss, and not that of the 
external shape of crystals. 

T h e set of points at which the a toms (or more precisely the 
atomic nuclei) are located is called a crystal lattice. In consider
ing the symmetry of the lattice we may regard it as unbounded in 
space, ignoring the boundaries of the crystal , since these do not 
affect the structure of the lattice as such. 

The fundamental characterist ic of a crystal lattice is the spatial 
periodicity of its s t ructure: the crystal as it were consists of re
peated units. T h e lattice may be divided by three families of 
parallel planes into identical parallelepipeds containing equal 
numbers of a toms arranged in the same manner . T h e crystal is an 
assembly of such parallelepipeds in parallel positions. T h u s , if the 
lattice is moved as a whole, parallel to itself, along the direction of 
any edge of the parallelepipeds through a distance equal to an 
integral number of times the length of that edge, the lattice will be 
unchanged in appearance . Such a displacement is called a transla
tion, and the symmetry of the lattice with respect to these 
displacements is called translational symmetry. 

T h e smallest parallelepiped which can be repeated to form the 
entire crystal lattice is called the unit cell of the lattice. T h e size 
and shape of this cell and the arrangement of the a toms in it 
completely determine the s tructure of the crystal. T h e lengths 
and directions of the three edges of the unit cell define three 
vectors called the basic vectors of the lattice; these are the short
est distances through which the lattice can be displaced so as to 
remain unchanged in appearance . 
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If there is an a tom at a vertex of a unit cell, there must evidently 
be atoms of the same kind at every ver tex of every cell. T h e 
assembly of these like a toms in corresponding positions is called 
a Bravais lattice of the crystal in quest ion (Fig. 54). It is a kind of 
skeleton of the crystal lattice, displaying the whole of the t rans
lational symmetry , i.e. the complete periodicity. Any of its a toms 
can be moved to the position of any other by some translation of 
the lattice. 

F I G . 5 4 . 

It should not be supposed that the a toms in a Bravais lattice are 
necessarily all the a toms in the crystal . They need not even be all 
the atoms of one kind. This important fact may be illustrated by 
an example , considering for clarity not a three-dimensional lattice 
(as the crystal lattice really is) but a two-dimensional one which 
is more easily shown in a diagram. 

Let the lattice consist of only one kind of a tom, represented by 
the dots in Fig. 55a. It is easy to see that , al though all these a toms 
are of the same kind, they are not crystallographically equivalent. 
F o r the fact that all the a toms in a Bravais lattice are in cor
responding positions means that, if any a tom in it has a neighbour 
at a certain distance in a given direction, then all the a toms in the 
Bravais lattice will have neighbours of the same kind at the same 
distance in the same direction. It is therefore clear that the points 
of type 1 in Fig. 55a are not in positions of the same type as the 
points of type 2. T h e point 1 has a neighbour 2 at a dis tance d, but 
the point 2 does not have a neighbour at that distance in the same 
direction. T h e points 1 and 2 are therefore not equivalent and do 
not belong to the same Bravais lattice. Points of each type separ
ately form a Bravais lattice at a distance d from that formed by 
points of the other type. 
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If the a toms 2 are moved to the centres of the squares formed 
by the points 1 (Fig. 55b), then all the atoms become equivalent ; 
an atom 2 will have a neighbour 1 at the same distance and in the 
same direction as an a tom 1 has a neighbour 2. In this s t ructure 
all the a toms together form a single Bravais lattice. 

It is clear from the foregoing that a crystal in general consists 
of several Bravais lattices which interpenetrate one another . 
Each of these corresponds to a particular type and arrangement 
of a toms, and all the lattices, regarded simply as sets of points , 
are identical. 

2 

D . 2 · · · 

I I 

• 4. · 

(a) 

• · · 
• · · 

(b) 
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If all the a toms in a crystal form a single Bravais lattice, then 
each unit cell contains only one atom. F o r example , in Fig. 55b 
each cell (a parallelogram in the two-dimensional lattice) contains 
a single a tom 1 or 2. [Here it may be noted that in counting the 
number of a toms per cell, only one vertex of each cell is to be 
taken, the remainder being assigned to adjoining cells.] 

If, however , the crystal lattice is composed of several Bravais 
lattices, the unit cell contains more than one a tom, namely one 
from each Bravais lattice. F o r example, in the lattice shown in 
Fig. 55a the unit cell contains two a toms: one a tom 1 and one 
a tom 2. 

F I G . 5 6 . 
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The division of the crystal into basic parallelepipeds, i.e. unit 
cells, is not unique. A unit cell may, in principle, be chosen in an 
infinity of ways. T o illustrate this, let us again consider a two-
dimensional lattice (Fig. 56). W e can clearly regard the unit cell 
either as the parallelogram a or as the parallelogram a' with equal 
vaHdity. 

It is important , however , that despite this ambiguity the unit 
cell, however chosen, will contain the same number of a toms 
and have the same volume (in a two-dimensional lattice, the same 
area: the parallelograms a and a' have the same base and the 
same height, and therefore the same area). F o r let us consider 
a toms of a given kind and position. It is clear from the foregoing 
that each cell contains one such a tom, and the number of cells in 
a volume V of the crystal is therefore always equal to the number 
Ν of these a toms. Thus the volume of one cell ν = VIΝ, however 
the cell is chosen. 

§43. Crystal systems 
T h e Bravais lattice is a very important characterist ic of a 

crystal , and the classification of the various types of crystal 
symmetry is based in the first instance on the classification of 
the various types of Bravais lattice. 

All Bravais lattices have translational symmetry . In addition 
they may also have the symmetry elements discussed in §40, i.e. 
various axes and planes of symmetry . This symmetry is the basis 
of the classification described below. 

F o r example, every point of a Bravais lattice is a centre of 
symmetry , since to each atom in the lattice there corresponds 
another a tom collinear with that a tom and the lattice point 
considered and at the same distance from this point. T h u s any 
Bravais lattice has a centre of symmetry , but it may also possess 
higher symmetry. 

A body of finite size, such as a molecule, may in principle have 
an axis of symmetry of any order. A periodic s t ructure , on the 
other hand, such as a crystal lattice, can have axes of symmetry 
only of a small number of orders : 2, 3, 4 or 6. Fo r if the lattice 
had an axis of symmetry of order 5, say, this would mean that 
the lattice contained a plane in which there were points forming 
regular pentagons. But this is certainly impossible; the only 
regular polygons which can completely fill a plane are equilateral 
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whence it is seen that the quanti ty 2nl(n — 2) must be an integer, 
and this is t rue only for = 3 , 4 , and 6. 

Thus we see that by no means all types of symmetry are pos
sible in lattices. In consequence , there are only a relatively small 
number of types of symmetry of Bravais lattices. T h e s e are called 
crystal systems, and they will now be enumerated. 

1. Cubic system. T h e most symmetrical Bravais lattice is 
one having the symmetry of a cube. (Instead of listing the axes 
and planes of symmetry of the lattice, we shall simply state the 
geometrical figure, in this case a cube, which has the same 
symmetry.) 

This lattice is obtained by placing a toms at the vertices of 
cubic cells. There are, however , other ways of construct ing a 
Bravais lattice with the symmetry of a cube. It is evident that 
the cubic symmetry is unaffected by placing an atom also at the 
centre of each cubic cell; all the a toms (at the vertices and at the 
centres of the cubic cells) will have the same relative position, 
i.e. the same neighbours, and will therefore form a single Bravais 
lattice. We can also construct a cubic Bravais lattice by adding to 
the atoms at the vertices of the cubic cells an a tom at the centre 
of every face of the cubes. 

Thus there are three different Bravais lattices belonging to the 
cubic system. They are called simple, body-centred and face-
centred lattices and denoted by the symbols P, I, F respectively. 
Figure 57 shows the arrangement of the a toms in the cells of these 
lattices. 

T h e cubic cell of the simple Bravais lattice is also the unit 
cell, but the cubic cells of the lattices / and F are not unit cells, 
as we see from the fact that they contain more than one atom. In 

triangles, squares , and regular hexago;is. In order to prove this 
s tatement , let us consider any point in the plane at which the 
sides of polygons filling the plane meet. In order to fill the plane 
completely, the angle be tween adjoining sides of a polygon must 
be an integral submultiple of 2π, i.e. must be 2πΙρ, where ρ is 
an> integer. T h e angle in a regular Ai-gon is π{η—2)/η. T h u s we 
have 

π{η-2)_2π 
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Fig. 58 the thick lines show the unit cells of all three types of 
cubic lattice. In the body-centred cubic cell there are two a toms 
(e.g. 1 and Γ in Fig. 58), and in the face-centred cell there are 
four a toms ( 1 , Γ , Γ', Γ" in the diagram); the other a toms must be 
regarded as belonging to adjoining cells. Hence it follows that 
the volumes of the unit cells in the body-centred and face-
centred lattices are respectively ia^ and ia^, where a is the length 
of the edge of the original cube. 

The length a is called the lattice constant. It is the only numerical 
parameter that is needed to describe a cubic lattice. 

T h e unit cells in the body-centred and face-centred lattices 
have a form which does not itself possess the cubic symmetry 
of the lattice. In this sense the representat ion of the s t ructure of 
the crystal by means of such cells does not exhibit its symmetry 
so clearly as the representat ion by means of the cubic cells which 
are not unit cells. T h e arrangement of a toms in the crystal is 
therefore usually described in terms of the cubic cells, using 
rectangular coordinates with axes X, Y, Ζ along three edges of 
the cubic cell and the constant a as the unit of measurement of 
the coordinates . F o r example, an atom at the centre of a cubic 
cell is described by the three coordinates i , i , i ; the coordinates 
i h 0 define an atom at the centre of a face in the plane XY, and 
so on. 

V 
F I G . 5 9 . 
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2. Tetragonal system. If a cube is s t retched in the direction 
of one of its edges, a less symmetrical geometrical figure is 
obtained, namely a right square prism, whose symmetry cor
responds to that of Bravais lattices of the tetragonal system. 

There are two types of such lattices, simple and body-centred, 
whose cells are shown in Fig. 57. A t first sight it appears that 
we could construct a lattice with the same symmetry by adding 
to the simple lattice cell one atom at the centre of each end face 
of the prism (Fig. 59). However , it is easily seen that such a 
lattice would be reduced to another simple tetragonal Bravais 
lattice by simply taking a different basic square prism cell, so 
that no new lattice results. F o r by joining the a toms at the centres 
of the end faces of two adjoining cells to the a toms at the vert ices, 
as shown in Fig. 59, we obtain another prism whose symmetry 
is the same as the original one and which has a toms only at the 
vertices. Similarly, there is no face-centred tetragonal Bravais 
lattice, since it is equivalent to the body-centred one. 

T h e tetragonal lattice is described by two cons tants , the edge 
length a of the base and the height c of the prism. 

3. Orthorhombic system. If a cube is s tretched along two of 
its edges by different amounts , we obtain a rectangular parallele
piped with edges of three different lengths. T h e symmetry of this 
figure is that of lattices of the or thorhombic system. 

The re are four types of or thorhombic Bravais lattices: simple, 
body-centred, face-centred and base-centred, the last of these 
being denoted by the symbol C. Fig. 57 shows, as for the o ther 
sys tems, the basic parallelepipeds of the or thorhombic latt ices, 
whose forms correspond to the full symmetry of this sys tem; here 
again, they coincide with the unit cell only in the simple Bravais 
lattice. 

T h e or thorhombic lattice is described by three parameters , the 
lengths a, b, c of the edges of the cell. T h e s e are taken as the 
units of length on the axes of rectangular coordinates along the 
corresponding edges of the cell. 

4. Monoclinic system. This has an even lower symmetry , 
namely that of the figure obtained from a rectangular parallele
piped by "s lan t ing" it along one edge, giving a right parallelepiped 
with arbitrary base. This system includes two Bravais lattices, 
Ρ and C in Fig. 57. 

T h e , monocHnic lattice is described by four parameters , the 
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lengths a, fc, c of the edges of the cell and the angle β be tween two 
of these edges (the others being at right angles). He re again, the 
positions of the a toms are specified by means of coordinates with 
axes along the three edges of the cell, but these coordinates are 
now oblique and not rectangular. 

5. Triclinic system. This corresponds to the symmetry of an 
arbitrary oblique parallelepiped. It is the lowest symmetry , com
prising only a centre of symmetry. It includes only one Bravais 
lattice P , described by the lengths ¿, c of three edges of the cell 
and the angles a , β, y be tween them. 

T w o further crystal systems stand somewhat apart . 
6. Hexagonal system. T h e lattices of this system have very 

high symmetry, corresponding to that of a right regular hexagonal 
prism. T h e Bravais lattice of this system (denoted by H) can be 
constructed in only one way: its lattice points are at the vert ices 
of hexagonal prisms and at the centres of their hexagonal faces. 

T h e hexagonal lattice is described by two parameters : the edge 
length a of the base and the height c of the prism. T h e unit cell in 
this lattice is a parallelepiped whose base is a rhombus , as shown 
by the broken fines in Fig. 57. T h e edges of this unit cell (height 
c and two sides a of the base at an angle of 120°) are used as 
coordinate axes in specifying the position of the a toms in the 
lattice. 

7. Rhombohedral system. This corresponds to the symmetry 
of a rhombohedron , a figure obtained by stretching or compress 
ing a cube along one of its spatial diagonals without changing the 
length of the edges. All its faces are equal rhombuses . In the only 
Bravais lattice possible in this system (denoted by /?), the lattice 
points are at the vertices of rhombohedra . This lattice is described 
by two parameters : the length a of the edges of the cell and the 
angle a be tween them. F o r a = 90° the rhombohedron becomes a 
cube. 

This completes the fist of the various Bravais lattices. We see 
that there are altogether seven types of symmetry of the Bravais 
lattice, i.e. seven crystal sys tems, corresponding to fourteen 
different types of Bravais lattice. 

T h e crystal systems are the basis of the classification of crys
tals and are principally used to describe the propert ies of the 
crystal. T h e terms ' 'hexagonal crys ta l" , "cub ic c rys ta l" and so on 
frequently used for brevity must be taken as indicating the crystal 
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This important fact may be illustrated by an example , again 
using for clarity a representat ion of a two-dimensional lattice. In 
Fig. 60 the white circles are the points of a two-dimensional 
' ' hexagona l" Bravais lattice. An axis of symmetry of order 6 
passes through each point of this lattice at right angles to the 
plane of the diagram. N o w let three further lattices of the same 
kind be superposed on this lattice; their points are shown by the 
black circles in Fig. 60. It is clear that in the resulting lattice the 
axes of symmetry jus t mentioned will be of order 3 and not 6. 

We see that, when the actual lattice is composi te , its symmetry 
may be lower than that of its Bravais lattice. 

system and not, for example , the external form of a particular 
specimen. 

It may also be mentioned that crystals of the rhombohedral , 
hexagonal and tetragonal sys tems, whose lattices are described 
by two parameters , are called uniaxial crystals , while those of the 
triclinic, monoclinic and or thorhombic systems are called biaxial 
crystals. 

§44. Space groups 
T h e Bravais lattices discussed above are sets of a toms which 

are equivalent, i.e. of the same kind and similarly situated. It has 
already been stressed that a Bravais lattice does not in general 
include all the atoms in a crystal , and an actual crystal lattice can 
be represented as an assembly of several interpenetrat ing Bravais 
lattices. Although all these lattices are entirely identical, the sym
metry of the assembly, i.e. the symmetry of the crystal itself, may 
differ considerably from that of a single Bravais lattice. 
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In actual crystal lattices it is also necessary to take into account 
the possibility of the existence of a new kind of symmetry e lement 
consisting of a combination of rotations or reflections with 
translations. Such elements are called screw axes and glide 
planes. 

C3 

^3 

G 
C 

α 

F I G . 6 1 . 

T h e lattice has a screw axis of order η if it is unchanged in 
appearance by. rotation through an angle 2πΙη about the axis 
together with a displacement through a certain distance along the 
axis. T o illustrate this symmetry, Fig. 61 shows a linear sequence 
of a toms (to be imagined extended indefinitely in both directions) 
having a screw axis of order 3. This structure is periodic, with 
period a; His unchanged in appearance by a rotation through 120° 
about the axis together with a displacement through ia along the 
axis. 

If the lattice is unchanged in appearance by reflection in a plane 
together with a displacement through a certain distance in a direc
tion lying in that plane the lattice is said to possess a glide plane. 

Thus an actual crystal has a certain translational symmetry 
(described by the type of its Bravais lattice) and may also have 
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simple and screw axes of symmetry , rotary-reflection axes , and 
simple and glide planes of symmetry . All these elements may be 
combined in various ways . 

T h e set of all symmetry elements of an actual crystal lattice is 
called its space group. This gives the most complete description 
of the symmetry of the arrangement of a toms in the crystal , i.e. 
the symmetry of its internal s t ructure. 

There are found to be altogether 230 different space groups, 
discovered by E. S. Fedorov in 1891. T h e s e groups are cus tom
arily assigned to the crystal sys tems in accordance with the Bra
vais lattices by which they are generated. W e shall not, of course , 
list here all the space groups, but merely state how they are distrib
uted among the sys tems: tricHnic 2 , monoclinic 13, or thorhom
bic 59, rhombohedral 7, tetragonal 68 , hexagonal 45 , cubic 36. 

T h e phenomenon of s tereoisomerism in molecules has been 
described in §41 . This can occur also in crystals (where it is 
called enantiomorphism). The re exist crystals whose lattices are 
mirror images and which nevertheless cannot be made to coincide 
by any displacement in space. As with molecules, enant iomor
phism of crystals is possible only when the crystal lattice has no 
element of symmetry which includes reflection in a plane. An 
example of such a structure is given by crystals of ordinary 
quartz , which belongs to the rhombohedra l system (this refers to 
the modification of quartz which exists at ordinary temperatures) . 

§45. Crystal classes 
There are many physical phenomena in which the atomic 

structure of matter does not appear directly. In considering such 
phenomena, matter may be regarded as a cont inuous medium and 
its internal s tructure may be ignored. F o r example , the thermal 
expansion of solids and the deformation of solids by external 
forces are phenomena of this type. T h e propert ies of mat ter as a 
cont inuous medium are called macroscopic properties. 

T h e macroscopic propert ies of a crystal are different in different 
directions. F o r example, the propert ies of t ransmission of light 
through a crystal depend on the direction of the ray; the thermal 
expansion of a crystal is in general different in different directions; 
the deformation of a crystal depends on the orientation of the 
external forces, and so on. T h e cause of this dependence of 
properties on direction is related, of course , to the s tructure of the 
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Although the propert ies of crystals are in general different in 
different directions, there may be some directions in which they 
are the same; such directions are said to be equivalent. F o r ex
ample, if a crystal has a centre of symmetry , any direction in it is 
equivalent to the opposite direction; if a crystal has a plane of 
symmetry, any direction is equivalent to the direction which is its 
mirror image in the plane (Fig. 62), and so on. 

It is evident that the " s y m m e t r y of d i rect ions" in a crystal , and 
therefore the symmetry of its macroscopic propert ies , are deter
mined by its axes and planes of symmetry. T h e translational 
symmetry is here unimportant , since a translation of the lattice 
does not affect directions in it; thus the macroscopic propert ies 
of a crystal do not depend on its particular Bravais lattice (among 
those possible in a given system). F r o m this point of view it is 
also immaterial whether the crystal has a simple or a screw axis 
of symmetry of a given order, and whether a plane of symmetry is 
a simple or a glide plane. 

There is a limited number (32) of possible combinat ions of 
planes and axes of symmetry which can describe the symmetry of 
directions in a crystal. These combinat ions, i.e. types of macro
scopic symmetry of a crystal as an anisotropic medium, are called 
crystal classes. 

crystal. It is clear, for example, that the stretching of a cubic 
crystal in a direction parallel to the edges of the cubic cells in its 
lattice will not occur in the same way as a stretching along the 
diagonal of these cells. 

The dependence of the physical propert ies of a body on direc
tion is called anisotropy. We may say that a crystal is an aniso
tropic medium. In this respect crystals are fundamentally different 
from isotropic media, such as liquids and gases, whose propert ies 
are the same in all directions. 
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T h e relation be tween the space group and the class of a crystal 
is clear from the foregoing. T h e class is derived from the space 
group by omitting all translations and the distinctions be tween 
simple and screw axes of symmetry and simple and glide planes 
of symmetry. 

T h e crystal classes, like the space groups, are assigned to the 
systems in accordance with the Bravais lattices for which they 
actually occur in crystals. It is found that the numbers of classes 
in the systems are: triclinic 2, monoclinic 3, or thorhombic 3, 
tetragonal 7, cubic 5, rhombohedral 5 and hexagonal 7 (though it 
should be noted that all the classes in the rhombohedra l sys tem can 
be given by either a rhombohedra l or a hexagonal Bravais lattice). 

Among the classes belonging to a given system there is one 
which has the full symmetry of the system. T h e remaining classes 
are of lower symmetry , i.e. have fewer symmetry elements than 
the system in question. 

As an example of the relation be tween the macroscopic pro
perties and the symmetry of a crystal , let us consider thermal 
expansion. 

An isotropic body (a liquid or gas) expands uniformly in all 
directions on heating, and is therefore described by a single co
efficient of thermal expansion. It is easily seen that the same is 
true of cubic crystals. F o r a crystal of the cubic system, as it 
expands , inust remain a cubic crystal , and its lattice must there
fore retain its shape; hence it follows that such a crystal must 
expand uniformly in all direct ions, i.e. like an isotropic body. 

A tetragonal crystal , on the other hand, though it remains tetra
gonal, need not retain the same ratio of the height c and width a of 
its cells. T h e crystal can therefore expand differently in the direc
tion of the height of the cells and in directions perpendicular 
thereto . In other words , the thermal expansion of a tetragonal 
crystal is described by two coefficients (and the same is t rue of 
any uniaxial crystal). T h e thermal expansion of biaxial crystals is 
described by three coefficients which give the expansion along 
three axes. 

§46. Lattices of the chemical elements 
We shall now describe the s tructure of some actual crystals , 

and first mention that, al though we speak for brevity of the a toms ' 
being located at the lattice points, it would be more correct to say 
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that their nuclei are located there. T h e atoms themselves can not 
be regarded as points in a crystal lattice; they occupy a consider
able volume, and neighbouring a toms are as it were in contact . 
H e r e , as in molecules, the outer parts of the electron shells are 
appreciably distorted and ' ' shared" , in comparison with the shells 
of isolated a toms. T h e most accurate and complete way of 
describing the structure of a crystal therefore consists in deter
mining the distribution of the "e lec t ron dens i ty" throughout the 
volume of the lattice. 

Let us first consider the crystal s t ructure of the chemical ele
ments . About forty different lattices formed by the elements are 
known, and some of them are very complex. F o r example , one 
modification of manganese crystallises with a body-centred cubic 
Bravais lattice containing fifty-eight a toms in one cubic cell (29 
atoms in the unit cell); one modification of sulphur has a face-
centred or thorhombic Bravais lattice with 128 a toms in one cell 
(32 atoms in the unit cell). T h e great majority of the e lements , 
however , crystallise in comparat ively simple lattices. 

About twenty elements form cubic crystals in which all the 
atoms const i tute a single face-centred Bravais lattice; they in
clude many metals (silver, gold, copper , aluminium, etc.) and also 
the crystals of the noble gases. In the crystals of about fifteen 
elements , all of which are metals , the a toms consti tute a single 
body-centred cubic Bravais lattice; these include the alkali metals 
lithium, sodium and potassium. N o element, however , forms a 
simple cubic lattice. 

In order to unders tand the reason for this preference for body-
centred and face-centred s t ructures , let us consider a problem of a 
kindred type, though it has no direct physical significance: the 
packing of similar spheres . 

Let us take first the packing of spheres in a simple cubic lattice. 
Then the spheres at adjoining vertices of cubic cells are in con
tact, and the edge a of the cube is therefore equal to the diameter 
d of the spheres . Since each cubic cell in this lattice corresponds 
to one sphere, we can say that the volume per sphere is = d^. 
T h e volume of the sphere itself is (4nl3)d^lS = 0-52if, i.e. is only 
5 2 % of the volume of the cell. 

A closer packing is given by the body-centred cubic lattice. 
H e r e the nearest neighbours, which must be in contact , are the 
a toms at a ver tex and at the centre of a cell. Since the spatial 
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If this lattice is viewed along a diagonal of the cube, it can be 
seen to consist of successive layers in each of which the lattice 
points (sphere centres) form a network of equilateral triangles 
(Fig. 63a). In each successive layer the lattice points lie above the 
centres of the triangles in the previous layer, and there are three 
types of layer which al ternate in succession. In Figs. 63a and 63b 
the figures indicate the cor respondence be tween the points in 
these layers and the points of the cubic lattice. 

An equally close packing may, however , clearly be achieved by 
alternating layers of only two types (Fig. 64). This gives a hexa
gonal lattice with two a toms in the unit cell, called hexagonal 
close packing. In the sphere model the ratio of the height c of 
the prismatic cell in this lattice (distance be tween neares t 

diagonal of the cube is flV3, we must have d = aV^/l, and the 
volume of the cubic cell is therefore a'^ = 8i/^/3V3. T h e body-
centred cubic cell contains two spheres , and the volume of the 
unit cell containing one sphere is 4d^l3 V 3 . T h u s we easily find 
that the sphere occupies 6 8 % of this volume. 

Finally, the closest packing is that given by the face-centred 
cubic lattice (for which reason it is called cubic close packing). In 
this case a sphere whose centre is at the centre of a face must 
touch spheres whose centres are at vertices of the cube. T h e cube 
edge length a = dVl, the volume of the unit cell is one quar ter 
of the cube volume, ia^ = d^lVl, and the sphere occupies 
7 3 % of this. 
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similar layers) to the length a of its base edge can be shown 
by calculation to be cja = 1-63. 

Some fifteen elements , all of which are metals, have a hexa
gonal close-packed lattice; they include magnesium, cadmium, 
zinc and nickel. In most of these the ratio of axes in the crystal 
is very close to the ideal value 1-63. There are except ions , how
ever: in cadmium and zinc the ratio cla is about 1 -9, i.e. the lattice 
is more elongated in the direction of the prism altitude than would 
occur in close packing of spheres . This results in a more marked 
anisotropy of these crystals. 

T h e three types of lattice described above are those most com
monly found among the elements . There exist also various other 
lattices in which very few elements crystallise. Some of these will 
be described in outline below. 

T h e most common modification of carbon, namely graphite , 
has a hexagonal lattice; no other element crystallises in this form. 
It has a layer s t ructure, consisting of plane parallel layers with the 
a toms at the vertices of regular hexagons (Fig 65). T h e distance 

mm*'. 
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between adjoining layers is 2-3 t imes the distance be tween a toms 
within a layer. This explains the easy flaking of graphite. 

Another modification of carbon, diamond, has a cubic lattice 
which may be regarded as formed by two face-centred Bravais 
lattices, a quarter-diagonal of the cube apart. T h u s each carbon 
atom is surrounded by four neighbours at equal dis tances, form
ing a tetrahedron. This lattice is shown in Fig. 66 ; the hatched 
circles and the white circles are carbon a toms forming the diff'er-
ent Bravais lattices. Silicon and germanium, the homologues of 
carbon, also have lattices of the diamond type. 

T h e bismuth lattice is of interest . It belongs to the rhombohe
dral system, but is distinctive in being very nearly cubic. This 
lattice may be regarded as a slightly deformed simple cubic lattice, 
the cube being slightly flattened along its diagonal (thus becoming 
a rhombohedron) , and there is also a very slight additional shift 
of the a toms. 

All the elements described above have atomic lattices, in which 
separate molecules cannot be distinguished. Some elements , 
however , crystallise in molecular lattices. F o r example , hydro
gen, nitrogen, oxygen and the halogens (fluorine, chlorine, bro
mine and iodine) form lattices which can be regarded as being 
composed of diatomic molecules, i.e. pairs of a toms much closer 
together than the distances be tween pairs. 

§47. Lattices of compounds 
T h e crystal lattices of chemical compounds are almost as 

various as the compounds themselves . H e r e we shall describe 
only some of the simplest lattices. 

O n e of the commones t s tructures is that of rock salt, N a C l : a 
cubic lattice with half the lattice points occupied by sodium atoms 
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and half by chlorine a toms (Fig. 67). Each sodium atom is sym
metrically surrounded by six chlorine a toms, and vice versa. T h e 
Bravais lattice of N a C l is a face-centred cubic lattice. Each unit 
cell contains two atoms, one of sodium and one of chlorine. 

— 4-1 Δ -
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T h e arrangement of the a toms in a crystal lattice is customari ly 
described by stating their coordinates (defined as in §43). It is 
sufficient to indicate the positions of the minimum number of 
atoms from which those of the remainder can be obtained by add
ing a lattice vector. F o r example, the structure of N a C l is des
cribed by the coordinates of two atoms relative to the axes of the 
cubic cell: N a ( 0 , 0 , 0 ) , C l ( i i i ) . T h e coordinates of all other 
a toms are obtained from these by adding (or subtracting) a cer
tain number of basic lattice vectors , which may be taken, for 
example, as the distances from the origin to the centres of the 
three faces of the cube (the points with coordinates ( 0 , i , i ) , 

( i 0 , i ) , ( i i 0)). 

T h e lattice of caesium chloride, CsCl , is also of a very common 
type (Fig. 68). It has a simple cubic Bravais lattice. A toms of one 
kind are at the vertices of the cubic cells, and atoms of the other 
kind are at the centres of the cells. 

We may also mention the lattice of zinc blende, Z n S . This is 
obtained from the diamond lattice described in §46 by placing 
different a toms (Zn and S) at the points of the two interpenetrat
ing face-centred Bravais lattices (the hatched and white circles in 
Fig. 66). Each zinc a tom is surrounded by four sulphur a toms at 
the vertices of a te t rahedron, and vice versa. T h e positions of the 
a toms in the cubic cell are given by the coordinates Z n ( 0 , 0 , 0 ) , 
S ( i , i , i ) . 
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A characterist ic property of these lattices is that molecules of 
the compounds cannot be distinguished as particular groups of 
atoms. T h e whole crystal is, as it were , one huge molecule. 

T h e distribution of electrons in these lattices is such that 
around some nuclei there are on average more electrons, and 
around others fewer, than would be present in the free neutral 
atom. Such lattices may be quite adequately described as consist
ing of ions, and are therefore called ionic lattices. F o r example , 
the N a C l lattice consists of positive ions Na+ and negative 
ions cr. 

There are other lattices of compounds in which individual 
molecules can be distinguished as especially closely arranged 
groups of a toms; these include, in particular, many organic crys
tals. But the division of crystals into atomic and molecular is 
largely arbitrary, and various intermediate cases are possible. 

A typical example of this is the Cd l s lattice, which has a kind of 
layered structure. O n either side of each layer of cadmium a toms 
and close to it, there is a layer of iodine a toms, the distance be
tween such ' ' t r ip le" layers being greater. Al though the latter sug
gests a molecular composit ion of the substance, it is not possible 
to distinguish individual molecules within each layer. 

§48. Crystal planes 
In the study of crystals it is frequently necessary to consider 

various planes passing through the lattice. T h e s e may be planes 
forming natural faces of the crystal , or planes having certain 
physical propert ies: for example, if a crystal is cleaved with a 
knife, the cleavage usually occurs along particular planes having 
distinctive propert ies . Finally, a considerat ion of various planes 
in the lattice is necessary in structural analysis by the use of 
X-rays. 

It is clear that only planes which pass through a toms in the 
crystal (i.e. through its lattice points) can have particular physical 
propert ies. Such planes are called crystal planes, and it is these 
which we shall now discuss. 

I t has already been mentioned in §43 that, in describing crys
tals, use is made of a coordinate system (in general obHque) 
whose axes are related in a definite way to the edges of the 
Bravais lattice cell, the coordinates being measured in terms of the 
lengths a, b, c of these edges (which are in general different). Let 
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these coordinates be denoted by x, z. T h e coordinates of the 
Bravais lattice points are given by integers (or half-integers, but 
this does not affect the subsequent discussion). 

The general equation of a plane is 

Ιχ-l· my-\- nz = k 

in either rectangular or oblique coordinates . If /, m , η and k are 
integers, this equation, regarded as a single equation for the three 
unknowns y, z, has an infinity of integral solutions. In other 
words , the plane contains an infinity of lattice points, and is 
therefore a crystal plane. 

T h e significance of the numbers /, m , η is easily seen. Putting 
y ζ = 0 in the equation, we find χ = kl I; this is the coordinate of 
the point where the plane intersects the χ axis. Similarly, we find 
that the intercepts of the plane on the y and ζ axes are kim and 
kin. Hence we conclude that the lengths of the intercepts on the 
three axes are in the ratios 

II 1:11 m:\ln, 

i.e. are inversely proportional to the numbers /, m , n. These 
lengths are measured in terms of a, b, c ; in ordinary units the 
lengths are in the ratios 

all:blm:cln. 

Thus we see that the numbers /, m , /7 determine the direction of 
the plane, i.e. its orientation relative to the axes of the lattice; 
the number k depends not on the direction of the plane but on its 

F I G . 6 9 . 
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(α) (b) 
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distance from the origin. By giving k various integral values, with 
fixed values of /, m, aí, we obtain a family of parallel crystal planes. 
It is the direction of a crystal plane which is of importance, and 
not its absolute position in the lattice. In this sense the plane is 
fully defined by the set of three numbers /, m, T h e highest com
mon factor may also be cancelled from these numbers , since the 
direction of the plane is obviously unchanged by this. T h e num
bers /, m, Al thus defined are called the indices of the crystal plane 
and are writ ten in parentheses : {Imn). 

As examples , we shall consider various planes in a cubic lattice. 
The plane perpendicular to the χ axis (Fig. 69) has intercepts 
1, oc^ 00 on the axes ; the reciprocals of these are 1, 0, 0, and the 
indices of the plane are (100). Similarly, the indices of the planes 
perpendicular to the y and ζ axes are (010) and (001). T h e s e 
planes bound a body of cubical shape and are therefore often 
called cube planes. 

ί ^ 
(111)^ 

(α) (b) 

F I G . 7 1 . 
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A diagonal plane parallel to the ζ axis has equal intercepts on 
the X and y axes (Fig. 70a). I ts indices are therefore (110). Such 
diagonal planes are called rhombic dodecahedron planes, from 
the name of the dodecahedron bounded by planes of this kind 
(Fig. 70b). 

A diagonal plane of the cube (Fig. 71a) has equal intercepts on 
all three axes , and its indices are therefore (111). Planes of this 
kind are called octahedron planes, from the regular oc tahedron 
with triangular faces which they form; the oc tahedron shown in 
Fig. 71b is obtained by joining the centres of the six faces of the 
cube. 

§49. The natural boundary of a crystal 
T h e planes which form the boundaries of a natural crystal 

always pass through atoms in its lattice, and are therefore crystal 
planes. T h e directions of the various faces of the crystal and the 
angles between them are related to the s tructure of its lattice and 
are therefore characterist ic of any given substance. 

Let us consider any two faces of the crystal , with indices {Imn) 
and (/' m' n'). W e denote by A, B, C and Α',Β', C the intercepts of 
these planes on the coordinate axes . According to the discussion 
in §48, the ratios of these intercepts (measured in ordinary units) 
are 

A:B:C = all:blm:cln, A':B':C'= all':blm':cln'. 

Dividing these ratios, we obtain 

AI A': BIB': CIC = I'll :m'lm: n'In. 

On multiplying by the least common multiple ofl,m,n, the right-
hand side of this relation is converted to the ratios of three 
integers. 

T h u s we see that the ratios of the intercepts of any face of the 
crystal on the axes , when expressed in terms of the intercepts 
of any other face, are always ratios of integers. This is called the 
law of rational indices. 

T h e surfaces of ionic crystals must necessarily contain ions of 
different signs. Crystal planes containing ions of one sign only can 
not be crystal faces. This often provides an explanation of certain 
propert ies of the crystallisation of various substances . 
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Let us consider, for example, the N a C l crystal , whose lattice 
is shown in Fig. 67 (§47). T h e diagram shows how the Na+ and 
CI" ions are situated in the (100) and (111) planes of this lattice. 
We see that the (111) plane (the diagonal plane shown by the 
broken lines in Fig. 67) passes through ions of one kind only, and 
this plane therefore cannot be a crystal face. Thus rock salt can
not crystallise in octahedra. T h e (001) plane (the cube face in 
Fig. 67), however , contains ions of opposi te sign alternating in 
both directions; thus rock salt can crystallise in cubes . 

In the caesium-chloride lattice (Fig. 68 , §47), on the other 
hand, the (100) planes contain ions of only one sign, and this 
substance therefore can not crystallise in cubes . 

The nature of the external boundary of a crystal , like all its 
macroscopic propert ies , depends on the crystal class. T h u s a 
study of the shape of natural crystals enables us , in principle, to 
determine their symmetry classes. In pract ice this may be ren
dered difficult by irregularities of shape due to various accidental 
effects of the conditions in which the crystal was grown. Fur the r 
information may be obtainable from the artificial formation of 
new faces by etching the surface of the crystal with a solvent. 
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§50. Temperature 
In all bodies existing in Na tu re there is a continual movement 

of their consti tuent particles. This movement is universal: the 
molecules are moving, and so are the a toms within them. T h e 
characterist ic feature of this movement is the randomness which 
it always to some extent possesses . T h e movement is called 
thermal motion, and it is the underlying cause of the phenomena 
of heat. 

Although usually the term ' ' thermal mot ion" refers to the mo
tion which takes place on an atomic or microscopic scale, thermal 
motion is also a property of larger, macroscopic , particles. A 
well-known example of this is the Brownian motion, the random 
motion of fine particles suspended in a liquid, which may be 
observed through a microscope. 

If two bodies are brought into contact , the a toms in them will 
collide and transfer energy to one another. Thus , when two 
bodies are in contact , energy passes from one body to the other ; 
the body which loses energy in this process is said to be the 
hotter, and that which gains energy the colder body. This t rans
fer of energy continues until a definite state of thermal equilibrium 
is set up. 

T o describe the hotness of bodies, the concept of tempera
ture is used. A quantitative definition of this might in principle 
be given by using any property of bodies which depends on their 
hotness . F o r example, we could define a scale of tempera ture 
simply by the volume of a column of mercury in thermal equi
librium with the body concerned. It is evident, however , that such 
a temperature scale would be entirely arbitrary and would have 
no particular physical significance; the temperature thus defined 
would be extremely inconvenient for the quanti tat ive description 
of any other thermal phenomena. It is therefore necessary to 
establish first of all a temperature scale having a physical signifi-

1 4 4 
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T = i'imv^ = ^mv\ 

Here m is the mass and ν the velocity of a particle, and the bar 
over an expression denotes that its mean value is to be taken. 
(The mean value may be unders tood as the mean energy of vari
ous particles in the body at a given instant, or as the mean energy 
of a given particle at various instants , the two definitions being 
entirely equivalent.) 

According to the above definition, tempera ture has the dimen
sions of energy, and may therefore be measured in the same units 
as energy, such as ergs. T h e erg, however , is an extremely in
convenient unit for the measurement of tempera ture , mainly be
cause the energy of the thermal motion of particles is usually very 
small in comparison with the erg. Moreover , the direct measure
ment of temperature as the energy of particles would of course be 
very difficult to carry out in practice. 

canee and not dependent on the nature of any one material , 
such as mercury or the glass of the vessel which contains the 
mercury. 

In physics the thermodynamic or absolute scale of tempera ture 
is used; it is intimately related to the general thermal propert ies of 
all bodies. It cannot be precisely defined here, since this would 
require a theoretical analysis of thermal phenomena which is out
side the scope of this book. Instead, we shall describe the scale by 
means of some of its " s e c o n d a r y " propert ies . 

It is clear that a physical definition of tempera ture must be 
based on a physical quantity which describes the state of a body 
and which is necessarily the same for any two bodies in thermal 
equilibrium. T h e mean kinetic energy of the translational motion 
of the particles (molecules or atoms) in a body is in fact found to 
have this remarkable property. If the mean energies are the same 
for the particles in any two bodies , then, when the bodies are 
brought into contact , individual particles will transfer energy in 
both directions, but there will be no net transfer of energy from 
either body to the other. 

F o r this reason, the mean kinetic energy of the translational 
motion of the particles within the body may be taken as a measure 
of temperature . T h e temperature Τ is customarily defined as two-
thirds of this energy: 
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kT = imv\ 

Since the kinetic energy is positive, so is the tempera ture T. 
It should be emphasised that this property of the tempera ture is 
not to be regarded as a law of N a t u r e ; it is simply a consequence 
of the definition of temperature . 

As already mentioned, the scale of tempera ture thus defined is 
called the absolute scale. T h e zero of temperature on this scale is 

F o r these reasons , a conventional but convenient unit of tem
perature , the degree, is used in physics. It is defined as one-
hundredth of the difference be tween the boiling point and the 
freezing point of pure water at a tmospher ic pressure . 

T h e conversion factor which determines the degree as a frac
tion of the erg is called Boltzmann's constant, and is usually 
denoted by k. I ts value is 

k= 1·38Χ 10-i«erg/deg. 

We see that the degree is in fact very small compared with the 
erg. As a further illustration we may find the change in the total 
kinetic energy of the particles in one gram-molecule of mat ter 
which corresponds to each degree of tempera ture change. This is 
obtained by multiplying k by Avogadro ' s number yVo-

kNo = 1 -38 X 10-1« X X 1023 erg 

= 8-31 J. 

W e may also give the conversion factor be tween the degree and 
the electron-volt, the latter being the unit of energy generally used 
in atomic physics: 

l e V = 1·60Χ 10-»2erg 

^1.38X10--«^^^^^^'""^^^· 

In what follows we shall always denote by Τ the tempera ture 
measured in degrees. T h e temperature measured in ergs is then 
kT, and so its definition given above must be written 
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the temperature at which the thermal motion ceases entirely. T h e 
scale of absolute tempera ture measured from this absolute zero is 
called the Kelvin scale, and degrees on it are denoted by the 
symbol °K. 

Besides the Kelvin scale, another scale is widely used in prac
tice, in which the temperature is measured from the freezing 
point of water , arbitrarily taken as the zero of tempera ture . This 
is called the Celsius scale, and degrees on it are denoted by the 
symbol °C. 

T o convert temperatures from one scale to the other , it is 
necessary to know the absolute tempera ture of the freezing point 
of water. According to recent measurements this is 273 ·15°Κ. 
Correspondingly, on the Celsius scale absolute zero is - 2 7 3 · 15°C. 

In the following, Τ will a lways denote the absolute tempera
ture; the Celsius tempera ture , if needed, will be denoted by /. 
Clearly 7 = r +273-15°. 

An experiment is often said to be conducted at room tempera
ture , meaning 20°C (i.e. about 293°K). It is useful to note that 
this temperature measured in electron-volts is about 1/40 eV. 

T o describe the velocity of the thermal motion of particles, we 
can use the square root of the quanti ty ^ which appears in the 
definition of tempera ture ; this square root is usually called 
simply the thermal velocity and denoted by VT-

t;̂  = Vî  = V{3kTlm). 

This formula determines the thermal velocity of an atom, a mole
cule or a Brownian particle, according to the mass that is sub
stituted in it. When the application is to molecules, it is convenient 
to modify the formula somewhat by multiplying the numera tor 
and denominator of the radicand by Avogadro ' s number and 
using the fact that the product mNo is the molecular weight μ of 
the substance: 

ντ=ν(3ΝΜΙμ) 

= 15-8 X 10V(7/^) cm/sec . 

For example, the thermal velocity of molecules of hydrogen 
(H2, μ = 2) at room tempera ture , is l - 9 x 10̂̂  cm/sec , i.e. about 
2 km/sec . 
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We see that the thermal velocity is proportional to the square 
root of the temperature and inversely proportional to the square 
root of the mass of the particles. T h e latter relation is the reason 
why the thermal motion, which is very violent for molecules , is 
still appreciable for the microscopically small particles in the 
Brownian motion, but entirely negligible for massive bodies. 

Let us return to the definition of temperature given above . It 
must be emphasised that this definition is based on classical 
mechanics . The quantitative relation which it asserts be tween the 
temperature and the energy of the thermal motion of the particles 
is valid only so long as this motion can be described by classical 
mechanics . It is found that, as the tempera ture decreases and the 
particle energy diminishes, the conditions for classical mechanics 
to be valid are eventually no longer satisfied, and classical 
mechanics must be replaced by quantum mechanics . This occurs 
sooner for particles of smaller mass and for those whose motion 
is more restricted by the forces acting. F o r example , the mole
cules of gas in translational motion move almost as free part icles, 
and this motion can always be treated classically, but the motion 
of a toms in the molecule is of the nature of small oscillations in a 
' 'potential wel l" around certain equilibrium posit ions, and classi
cal mechanics very soon ceases to be applicable to this motion. 
We shall return to this subject in §§57 and 58. 

It has been mentioned above that the thermal motion no 
longer occurs at absolute zero. This does not mean, however , 
that all motion of the particles in a body has stopped. According 
to quantum mechanics , the motion of the particles never ceases 
completely. Even at absolute zero there must remain some vibra
tional motion of the a toms within molecules, or vibrations of the 
atoms about the crystal lattice points in a solid. This motion, 
called zero-point vibrations, is a quantum phenomenon, and its 
energy is a measure of the quantum nature of a given object. A 
comparison of the energy of the thermal motion of the particles 
with the energy of their zero-point motion may serve as a criterion 
of the applicability of classical mechanics: the latter is suitable 
for the description of the thermal motion of the particles if the 
energy of this motion is sufficiently large compared with the zero-
point energy. 

T h e most striking instance of the zero-point motion, which is 
fully maintained even at absolute zero, is the motion of e lect rons . 
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the lightest particles, in a toms. T h e motion of electrons within 
the atom is always a purely quantum phenomenon. Owing to its 
relatively high energy, it is affected only to a very slight extent by 
the temperature of the body. The thermal motion of the a toms has 
a considerable effect on their electron shells only at very high 
temperatures , of the order of many thousands of degrees. 

§51. Pressure 

On account of the thermal motion of its particles, a gas (or 
liquid) exerts a pressure on the walls of the vessel containing it. 
T h e gas molecules, on colliding with the walls, transfer some 
momentum to them, and the change in momentum of a body per 
unit time defines the force acting on it. 

T h e force exerted by the gas (or liquid) per unit area of the 
wall gives the pressure on the wall of the vessel, which will be 
denoted by p. T h e dimensions of pressure are those of force 
divided by those of area, and can be written in various ways : 

r ^ i ^ d y n ^ e r g ^ g 
cm- cm-̂  cm.sec'^ 

In particular, it should be noted that the dimensions of pressure 
are the same as those of energy per unit volume. 

T h e unit of pressure in the C G S system is 1 dyn/cm-; a force 
of one dyne acting on an area of one square cent imetre . This unit 
is very small, however . A unit 10̂ ^ t imes larger is called a bar: 

1 bar - 10̂ ^ dyn/cm^ = 10 N/m- . 

T h e pressure at which a force of 1 kgf acts on an area of 1 cm-
is called a metric or technical atmosphere (at): 

l a t - lkgf/cm^ = 0-981 bar. 

The standard atmosphere (atm) is the pressure of a column of 
mercury of height 760 mm (with a certain density of mercury and 
a standard acceleration due to gravity): 

1 atm - 1-013 bar = 1-033 at. 
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The pressure corresponding to one millimetre of mercury is 

l m m H g = 1-333 X 10-3 bar. 

T h e propert ies of bodies taken as a whole without considering 
the details of their molecular s tructure (on which these propert ies 
in fact depend) are called macroscopic propert ies. Tempera tu re 
and pressure are among the most important quantit ies describing 
the macroscopic state of a body ; another such quanti ty is the 
volume of the body (denoted by V). These three quanti t ies , 
however , are not independent . F o r example , if a certain quanti ty 
of gas is enclosed in a vessel of given volume and has a given 
tempera ture , its pressure is thereby determined; if the volume 
or the temperature is changed, the pressure of the gas also changes . 

Thus only two of the three quantities p , V, Τ can be arbitrarily 
specified, the third being a function of these. We may say that 
the thermal propert ies are entirely determined by specifying any 
two of these quantit ies. 

The functional relation be tween the pressure , volume and 
temperature of a body is called the equation of state of the body 
concerned, and is one of the most important relations describing 
its thermal propert ies. 

T h e theoretical form of this relation can be established only 
for the simplest substances (see §53). In pract ice, therefore, 
experimental measurements must be used, the results of which 
can be represented graphically. Since a relation be tween three 
quantities is concerned, it would be fully represented by a surface 
in a three-dimensional coordinate system with /?, V and Τ plotted 
along the axes. However , since a three-dimensional construct ion 
is inconvenient in practice, only two-dimensional diagrams are 
generally drawn, showing families of curves which are the inter
sections of the surface with various planes parallel to one of the 
coordinate planes. F o r example, by taking the intersections of 
the surface with planes parallel to the /?F plane, i.e. perpendicular 
to the Τ axis, we obtain a family of curves called isotherms, 
which give the pressure as a function of the volume of the body 
for various given values of the temperature . Similarly isobars 
can be drawn; these are curves which give F as a function of Τ 
for given values of p. Finally, isochores give /? as a function of 
Τ for given values of V. 
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It has already been mentioned in §50 that the exchange of 
energy be tween bodies in contact cont inues until their tempera
tures are equal and thermal equilibrium is reached. A state of 
thermal equilibrium of a sys tem of bodies is defined as a state in 
which no spontaneous thermal processes occur in the system and 
every part of the sys tem is at rest relative to the o ther par ts and 
has no macroscopic motion (as opposed to the microscopic ther
mal motion of the particles within bodies). W e may now add that in 
equilibrium not only the tempera tures but also the pressures of all 
bodies in contact must be equal, since otherwise the total forces on 
the bodies would not be zero and the bodies would begin to move. 

Unde r ordinary condit ions the pressure is posit ive, i.e. is in the 
same direction as if the body were tending to expand. This is not 
necessary, however , and states of negative pressure are also 
possible, in which the body is as if it were " s t r e t ched" and there
fore tends to contract . "S t r e t ched" states of a Hquid can be 
brought about by sealing a carefully purified heated liquid in a 
thick-walled capillary. When the capillary cools , if its walls 
contract more slowly than the liquid, the latter should occupy 
only part of the volume within the capillary. T h e liquid, however , 
adheres to the walls and is thus " s t r e t ched" over the whole 
volume of the capillary. Another method is to place a Hquid in a 
glass capillary open at each end, which is then rapidly rotated 
about its midpoint. T h e liquid is s t re tched by centrifugal forces 
and, when a certain speed of rotation is reached, it finally " b r e a k s " 
and is thrown out of the capillary. Considerable negative pres
sures can be attained by these methods : up to 280 atm in water 
(at room temperature) , up to 40 atm in alcohol, up to 160 a tm in 
benzene, and so on. T h e s e values may be regarded as represent ing 
the resistance of the liquid to disruption. 

§52. Aggregate states of matter 
T h e concept of aggregate states (gaseous, liquid and solid) is 

used to give the most general description of the thermal propert ies 
of bodies. 

Owing to the low density of mat ter in the gaseous s tate , its 
molecules are relatively far apart , being at dis tances large com
pared with the size of the molecules themselves . T h e interaction 
between the molecules of a gas is therefore of subordinate im
por tance, and for the greater part of the t ime the molecules move 
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freely, undergoing collisions with one another only quite rarely. 
In liquids, on the other hand, the molecules are at dis tances 
comparable with their own dimensions, so that they are all in 
continual strong interaction and their thermal motion is highly 
complicated and irregular. 

Unde r ordinary condit ions, liqurds and gases differ so greatly 
in density that there is no difficulty in distinguishing be tween 
them. Never the less , the difference between these two states of 
matter is in fact not fundamental , but merely quanti tat ive, arising 
from the value of the density and the consequent degree of 
interaction of the molecules. T h e lack of any fundamental distinc
tion between them is especially clear from the fact that the transi
tion between a liquid state and a gaseous state can, in principle, 
be completely cont inuous, so that there is no instant at which we 
can say that one state ceases to exist and the other commences . 
This will be discussed further in §69. 

T h e difference between liquids and what are called amorphous 
(non-crystalline) solids is also quanti tat ive; the latter substances 
include glass, various resins, etc. He re again the absence of any 
fundamental difference is shown by the possibility of a cont inuous 
transition from one state to the other , achieved simply by heating. 
F o r example, solid glass, when heated, becomes gradually softer 
and finally entirely liquid; this process is completely cont inuous 
and there is no ' ' instant of t ransi t ion". T h e density of an amor
phous solid is not greatly different from that of the liquid formed 
from it. T h e main quanti tat ive difference between them is in 
viscosity, i.e. the ease with which they flow; this will be further 
discussed in §118. 

A general property of gases, liquids and amorphous solids is 
that the molecules in them are randomly distributed. This brings 
about the isotropy of these bodies , i.e. the fact that their proper
ties are the same in all directions. T h e proper ty of isotropy makes 
these bodies fundamentally different from the anisotropic crystal
line solids, in which the a toms are arranged in a regular manner. 

T h e thermal motion of the a toms in solids consists of small 
oscillations about certain equilibrium positions. In crystals , these 
positions are the crystal lattice points; in this respect the discus
sion in Chapter VI was imprecise in that it referred to the lattice 
points as the positions of the atomic nuclei, instead of the points 
about which the nuclei oscillate. Although the thermal motion in 
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solids is more "o rde red" than in gases or liquids (the a toms 
remaining close to the lattice points), it is r andom in the sense 
that the amplitudes and phases of the various a toms are entirely 
unrelated. 

Almost all solid bodies are crystalline, but only rarely are they 
separate crystals regular throughout their volume, called single 
crystals; such crystals are formed only under special condit ions 
of growth. 

Crystalline solids usually exist as polycrystals; all metals , for 
example, are of this kind. Such bodies consist of a very large 
number of individual crystallites or grains, often of microscopic 
size; for example , the dimensions of the crystallites in metals 
are usually of the order of 10"'^ to 10"^cm (the size depending 
considerably on the methods by which the metal is produced 
and treated). 

T h e relative position and orientation of the individual crystal
lites in a polycrystalline substance are usually entirely random. 
Fo r this reason, when such a substance is considered o n ' a scale 
large in comparison with the dimensions of the crystalli tes, it is 
isotropic. It is clear from the foregoing that this isotropy of 
polycrystalline bodies is only secondary, in contrast to their t rue 
molecular anisotropy which takes effect in the anisotropy of 
individual crystallites. 

As a result of some particular t reatment or a special method 
of growth, it may be possible to prepare a polycrystalline sub
stance in which the crystallites have a preferred crystallographic 
orientation. Such substances are said to have texture. F o r example , 
texture may be produced in metals by various kinds of cold 
working. T h e properties of these substances are , of course , 
anisotropic. 

§53. Ideal gases 
T h e simplest thermal propert ies are those of a gas so rarefied 

that the interaction between its molecules is of no practical 
importance. Such a gas, in which the interactions between the 
molecules may be neglected, is called an ideal gas. 

It should not be thought that the interaction be tween the 
molecules of an ideal gas does not exist at all. On the contrary , 
its molecules collide with one another and these collisions are 
important in bringing about the particular thermal propert ies of 
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F I G . 7 2 . 

T h e pressure of the gas on one face of the parallelepiped may 
be found by determining the momentum transferred to this face 
per unit t ime by molecules colliding with it. Since only the 
velocity component perpendicular to the surface of the wall 
changes in a collision, and the change is simply a change in sign, 
the momentum transferred in one coUision is mi;^—(—mi;^) = Imv^, 
where m is the mass of a molecule. When moving freely, the 
molecule t raverses the distance (Λ, say) be tween opposi te walls 
in a time /z/i;^, and so it returns to the ñrst wall in a time 2/z/i;^. 
Thus each molecule has vjlh coUisions with a given wall per 
unit time and transfers to it a momentum ImVz. vjlh = mvj^lh. 
T h e total force acting on the wall is the momentum transferred 
to it per unit time by all the gas molecules. 

1 m i ; / . 

where Σ denotes summation over all the molecules. 

the gas. But the collisions occur so rarely that the gas molecules 
move as free particles for the greater part of the t ime. 

Let us derive the equation of state of an ideal gas, i.e. the 
relation between its pressure , volume and temperature . T o do so, 
we imagine the gas to be enclosed in a vessel having the shape 
of a rectangular parallelepiped, and assume that the walls are 
"perfectly reflecting", i.e. reflect the incident molecules at an 
angle equal to the angle of incidence, without change in the 
magnitude of the velocity. (In Fig. 72 ν and v' are the velocities 
of a molecule before and after the collision; they are equal in 
magnitude and are at the same angle a to the normal to the wall.) 
These assumptions are made for simplicity; it is evident that the 
internal propert ies of the gas as such cannot in fact depend either 
on the shape of the vessel or on the propert ies of its walls. 

Pure Mathematical Physics



§53] IDEAL GASES 155 

m i ; / = imv'. 

Thus we have 

1 Ν F. = -^'jmv^. 

Replacing by pS, where ρ is the pressure of the gas and S the 
area of the face, and noting that hS is the volume V of the 
parallelepiped, we have 

pV = iNmv^ = iN .imv\ 

The mean kinetic energy of a molecule is, from the definition of 
tempera ture , and thus we have finally the equation of state 
for an ideal gas: 

pV=NkT. 

This is a universal equation, involving no quantit ies dependent 
on the nature of the g a s - a result which is an obvious effect of 
neglecting the interaction be tween the molecules and thus 
depriving the gas of any "individual i ty" . 

F o r two different ideal gases occupying equal volumes at the 
same pressure and tempera ture , the number of molecules will be 
the same in each gas. This is Avogadro's law. In particular, one 
cubic cent imetre of any ideal gas under s tandard condit ions, i.e. 
at temperature 0°C and pressure 1 a tm, contains 

1 -013 X 10^ X 1 
L = pVlkT = 1.38 X ιο - ΐ6χ273 ^ ^'^ ^ ^^'^ molecules ; 

this is sometimes called Loschmidt's number. 
T h e number Ν of molecules in a given mass of gas may be 

written Ν = VNQ, where ν is the number of gram-molecules 

If the number of molecules in the vessel is N, the sum can be 
written as Ν t imes the mean value m i ; / . But since all directions 
are completely equivalent with respect to the gas itself, we have 
mv/ = mvy^ = mvz^ and, since i ; / + f / + 1 ; / = f̂ , 
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(moles) of gas and No is Avogadro ' s number. Then the equat ion 
of state becomes 

pV=pRT, 

where R = kNo is called the gas constant. In particular, for one 
mole of gas we have 

pV=RT. 

Multiplication of the values of k and No gives 

/? = 8-314 X 10^ erg/deg.mole 
= 8-314J/deg.mole; 

if the calorie is used as the unit of energy, R is very nearly equal 
to 2 cal/deg.mole. 

If the gas pressure is measured in a tmospheres and the pressure 
in litres, then 

R = 0-082 l.atm/deg.mole. 

Using this value, we can easily find the volume of one gram-
molecule of gas at 1 atm pressure and 0°C: 

V = RTlp = 0-082 X 273/1 = 22-41. 

At constant temperature the product of the pressure and volume 
of a given quantity of gas is constant : 

pV = constant for Τ = constant . 

This is Boyle's law. 
F r o m the equation of state of an ideal gas it also follows that, 

if a certain mass of gas is at constant pressure , its volume is 
proportional to the absolute temperature of the gas: 

ViVo = τ I To for ρ = constant , 

where V and Vo are the values of the gas volume at tempera tures 
Τ and Γο. Similarly 

plpo = ΤI To for V = constant . 
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These important relations show that the absolute scale of tem
perature can be constructed without measuring the velocities 
and energies of molecules, by using the propert ies of ideal gases. 

If To is the freezing point of water , and the Celsius tempera ture 
t is used instead of the absolute tempera ture Τ of the gas 
( 7 = 273 + /) , the above relation be tween the volume and the 
temperature of the gas may be writ ten 

/ t \ 

V = Voy 1 -h j for ρ = constant . 

This is Charles' law, according to which the volume of the gas 
increases by 1/273 of its value at 0°C when the gas is heated by Γ . 

In deriving the equation of state for an ideal gas we have made 
no use of the fact that all its molecules are identical. This equa
tion is therefore valid also when the gas is a mixture of several 
different ideal g a s e s - a g a i n a natural result of neglecting the 
interaction between molecules. It is only necessary to take Ν 
as the total number of gas molecules, i.e. the sum of the numbers 
of the various kinds of molecules: Ν = Ni-\-N2-\ , where 
N¡ is the number of molecules of the ith kind. Writing the equat ion 
of state of the gas as 

pV=NikT^N2kT^- • • 

and noting that, if the whole volume F were occupied by molecules 
of the ith kind alone, the pressure Pi would be such that 
PiV = NikT, we conclude that 

i.e. the pressure of a mixture of gases is equal to the sum of the 
pressures which each individual gas would exert if it alone filled 
the volume {Dalton's law). T h e pressures Pi, p,, - - - are called the 
partial pressures of the respective gases. 

§54. An ideal gas in an external field 
Let us consider an ideal gas in a force field, for example the 

field of gravity. Since external forces then act on the gas mole
cules, the gas pressure will not be the same everywhere , but will 
vary from point to point. 
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F o r simplicity, we shall take the case where the field forces 
are in a fixed direction, which we choose as the ζ axis. W e con
sider two unit areas perpendicular to the ζ axis and at a dis tance 
dz apart. If the gas pressures on the two areas are ρ and p^dp, 
the pressure difference dp must clearly be equal to the total force 
on the gas particles in a parallelepiped of unit base and height 
dz. This force is Fndz, where η is the density of molecules (i.e. 
the number of molecules per unit volume) and F the force on one 
molecule at a point with coordinate z. H e n c e 

dp = nF dz. 

T h e force F is related to the potential energy U(z) of a molecule 
by F = -dUldz, so that 

dp = -ndz. dUldz = -ndU. 

Since the gas is assumed ideal, pV=NkT, and by using the 
relation ΝIV = « we can write this as /? = nkT. W e shall suppose 
that the gas temperature is the same at every point. T h e n 

dp = kTdn. 

Equating this to the above expression dp = —ndU, we find 

dnln = d\ogen = -dUlkT, 

whence 

logctt = — Γ + constant 

and finally 

where no is a constant which is evidently the density of molecules 
at a point where U = 0. 

T h e formula jus t derived which relates the variation in density 
of the gas to the potential energy of its molecules is called 
Boltzmann's formula. T h e pressure differs from the density by a 
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p = Poe 

In the field of gravity near the Ear th ' s surface, the potential 
energy of a molecule at height zis U = mgz, where m is the mass 
of a molecule. T h u s , if the tempera ture of the gas is regarded as 
independent of height, the pressure ρ at height ζ is related to the 
pressure p^ on the Ear th ' s surface by 

ρ = ροβ-'^'^"^"^. 

This is called the barometric formula\\i may be more convenient ly 
writ ten in the form 

where μ is the molecular weight of the gas and R the gas constant . 
This formula can also be applied to a mixture of gases. Since 

there is practically no interaction be tween the molecules of 
ideal gases, each gas may be treated separately, i.e. a similar 
formula is applicable to the partial pressure of each gas. 

T h e greater the molecular weight of a gas, the more rapidly 
its pressure decreases with increasing height. T h e a tmosphere 
therefore contains an increasing proport ion of light gases with 
increasing height; the content of oxygen, for example, decreases 
more rapidly than that of nitrogen. 

It should be remembered , however , that the applicability of the 
barometr ic formula to the real a tmosphere is very limited, since 
the a tmosphere is not in fact in thermal equilibrium and its 
temperature varies with height. 

An interesting conclusion can be drawn from Bol tzmann 's 
formula if we a t tempt to apply it to the a tmosphere at all dis tances 
from the Ear th . At very large dis tances from the Ear th ' s surface, 
U must be taken not as mgz but as the exact value of the potential 
energy of a particle: 

ü = -GMmlr, 

where G is the gravitational constant , Μ the Ear th ' s mass and 

constant factor kT, and so a similar equation is valid for the 
pressure: 
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r the distance from the centre of the Ear th (see §22). Substi tuting 
this energy in Bol tzmann's formula gives the following express ion 
for the gas density: 

where now denotes the gas density where U = 0 (i.e. at an 
infinite distance from the Earth) . Putting r here equal to the 
Ear th ' s radius R, we find a relation be tween the densities of the 
a tmosphere at the Ear th ' s surface (ΗΕ) and at infinity (AZoo): 

According to this formula, the density of the a tmosphere at an 
infinite distance from the Ear th should be non-zero. This con
clusion is absurd, however , since the a tmosphere originates from 
the Ear th , and a finite quanti ty of gas cannot be spread over an 
infinite volume with a density which is nowhere zero. T h e con
clusion is reached because we have tacitly assumed that the 
a tmosphere is in a state of thermal equilibrium, which does not 
in fact exist. This result shows, however , that a gravitational 
field cannot retain a gas in a state of equilibrium, and the a tmo
sphere should therefore be steadily dissipated into space. F o r 
the Ear th this dissipation is extremely slow, and in its whole t ime 
of existence the Ear th has not lost an appreciable fraction of its 
a tmosphere . F o r the Moon , however , with its much weaker field 
of gravity, the a tmosphere has been lost much more quickly, and 
in consequence the Moon now has no a tmosphere . 

§55. The Maxwellian distribution 
T h e thermal velocity VT is a certain average proper ty of the 

thermal motion of particles. In reality, different molecules move 
with different velocities and we may ask what is the velocity 
distribution of the molecules, that is, how many (on average) of 
the molecules in the body have a particular velocity? 

W e shall derive the answer to this question for an ideal gas in 
thermal equilibrium. T o do so, let us consider a column of gas in 
a uniform field of gravity, and first examine the distribution of 
molecules with respect to the values of only one velocity com
ponent , the vertical component v^. Let nf(vz)dvz denote the 
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number of molecules per unit volume of the gas for which the 
value of this component lies in an infinitesimal interval be tween 

and v^-{-dv^. He re η is the total number of molecules in the 
volume considered, and so f{v^) determines the fraction of 
molecules having a particular value of v^. 

Let us consider molecules with velocities in the interval dv^ 
which are in a layer of gas at height ζ and of infinitesimal thickness 
dz. T h e volume of this layer is equal to dz if the cross-section of 
the gas column is of unit area, and the number of such molecules 
is therefore n{z)f{v^)dv^dz, where n(z) is the density of gas 
molecules at height z. These molecules move as free particles 
(since the collisions in an ideal gas may here be neglected) and 
subsequently reach a different layer of thickness dz' at height 
z ' , with velocities in the interval be tween some values υ^' and 
v^'-\-dv^'. Since the number of molecules is unchanged, we have 

n{z)f{v,)dv,dz = n{z')f{v,')dv,'dz'. 

For movement in a field of gravity, the horizontal velocity 
components i;̂ ., remain constant , and the change in is deter
mined by the law of conservation of energy, according to which 

hmv^^ + mgz = ^mv;,'^^ mgz'. 

Differentiating this equation (for given constant values of ζ 
a n d z ' ) we obtain 

i;̂  dvz = dvz 

as the relation between dv^ and dv^, the ranges of values of the 
vertical velocities of the molecules considered, at heights ζ and 
z'. T h e thicknesses dz and dz! of the layers are related by 

dziv, = dz:\v^\ 

this simply expresses the fact that in a time dt = dzlv;^ during 
which a molecule crosses a layer dz at height z, it will travel a 
distance dz = ih'dt at height z'. Multiplication of the two 
equations above gives 

dv;,dz = dv^'dz'. 
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In the condition of constant number of molecules shown previous
ly, therefore, the differentials on the two sides of the equat ion 
cancel , leaving 

n(z)f{v,) = nizYM. 

T h e barometric formula states that 

η(ζ)Ιη(ζΊ = e-^^'^'^i^"^ 

(where h = z — z' '\s the difference in height), and hence 

Thus the required distribution function must be multiplied by 
^-mahikT ^ h e n î ^^2 is replaced by ^mv,'^ = Wv,^^-mgh, T h e 
only function having this property is the exponential function 

f{v,) = constant X ̂ -'''''̂ /̂2'̂ .̂ 

[It should be noted that the acceleration due to gravity does not 
appear in this formula. This is as it should be, since the mechan
ism of establishment of the velocity distribution of the gas 
molecules consists in coUisions between molecules and does 
not depend on the external field. In the foregoing derivation the 
field served only the auxiliary purpose of relating the velocity 
distribution to the already known Boltzmann's formula.] 

We have found the equilibrium distribution of molecules with 
respect to one component of the velocity. T h e fraction of 
molecules having given values of all three velocity components 
simultaneously is evidently obtained by multiplying together 
the fractions of molecules having given values of each component 
separately. Thus the complete distribution function is 

f(v^, Vy, v,) = constant X ^-^"^χ^/2/γτ^-'/^γι;^/2λ^τ^-^ι'.^/2Λ'Τ 

Adding the exponents and using the fact that the sum v/ 4- vj^ + 
is v^, the square of the magnitude of the velocity, we have 

finally 

/ = constant x ^ - ^ ^ ' ^ ^ / c r 

Pure Mathematical Physics



§55] T H E M A X W E L L I A N D I S T R I B U T I O N 163 

The number dN of gas molecules whose velocity components 
lie in the intervals between υ χ, Vy, and Vj.-\-dVj., Vy-\-dvy, i;^H-
dv^ is therefore 

dN = constant x e-'^''''''^^dv^dvydv,\ 

the constant coefficient is determined by the condition that the 
total number of molecules with all possible velocities is equal 
to the given number Ν of molecules in the gas, but its value will 
not be written out here. T h e formula derived above is called 
the Maxwellian distribution formula. 

T h e analogy between this formula and Bol tzmann's formula 
for the gas density distribution in space in an external field 
should be noted: in each formula we have an exponential expres
sion of the form e~^'^^, where e is the energy of a molecule (the 
kinetic energy kmv^ for the velocity distribution, and the potential 
energy U{x,y,z) in the external field for the distribution in space). 
This exponential expression is often called a Boltzmann factor. 

If the three components Vj., Vy, are given, both the magnitude 
and the direction of the velocity of the molecule are determined. 
But the distribution of molecules with respect to the direction 
of the velocity is simply a uniform distribution, with equal 
numbers , on average, travelling in every direction. [This follows 
from the fact that the Maxwellian distribution involves only the 
absolute magnitude ν of the velocity, but it is also evident a 
priori: if there existed some preferred direction of motion of 
the molecules in the gas, this would mean that the gas was not 
at rest but was moving in that direction.] 

T h e Maxwellian formula can be transformed so as to give 
directly the distribution of gas molecules with respect to absolute 
magnitude of velocity regardless of direction. F o r this purpose 
we must take the total number of molecules with various values 
of the velocity components Vj., Vy, but a given value of = 

+ + v/. This is easily done by using the following geo
metrical analogy. If we use a coordinate system with the values 
of Vjc, Vy, plotted along the axes , the product dvj. dvy dv^ will 
be the volume of an infinitesimal parallelepiped with edges dvj., 
dvy, dv^. We must sum over all volume elements at a fixed 
distance from the origin (since ν is clearly the length of the 
"radius vec tor" in these coordinates) . These volumes occupy 
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a spherical shell between two spheres of radii υ and v-l·dv. T h e 
volume of the shell is equal to the area 4πυ^ of the spherical 
surface multiplied by the thickness dv of the shell. 

Thus , replacing the product dvj.dvydvz in the Maxwell ian 
distribution formula by 4nv^dv, we find the number of molecules 
with velocities in the interval from i; to i; + dv: 

dN = constant X e-''''''^^'^v^dv. 

T h e coefficient of dv in this formula is the number of molecules 
per unit interval of velocity. As a function of ν it has the form 
shown in Fig. 73 . It is zero when v = 0, reaches a maximum for 
a value VQ, and tends very rapidly to zero as the velocity increases 
further. The maximum on the curve corresponds to the value 

= \/(2kTlm), which is slightly less than the thermal velocity 
VT defined in §50. 

F I G . 7 3 . 

Since different molecules have different velocities, it makes 
a difference, in determining the mean propert ies , which quanti ty 
is averaged. F o r example, the mean value v^ of the velocity 
itself is not the same as the velocity VT = ^/v^ (which is often 
called also the root-mean-square velocity, in order to stress its 
origin). F r o m the Maxwellian distribution it can be shown that 
V = 0'92VT. 

T h e Maxwellian distribution has been derived here for a 
monatomic gas, but it can in fact be deduced from much more 
general theoretical arguments , and is a universal result. It is 
valid for the thermal motion of molecules and a toms in all 
bodies, but it is based on classical mechanics and its validity 
is limited by quantum effects in the same way as the applicability 
of classical mechanics in general to thermal motion. 
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The velocity distribution in thermal motion can be studied 
by various methods using molecular beams. T h e s e are obtained 
by allowing molecules to evapora te into an evacuated vessel 
from a substance heated in a special type of furnace. T h e vessel 
is evacuated to such an extent that molecules move in it almost 
without collisions. 

One such method is based on the idea of a mechanical velocity 
selector, which works in the following way. T w o circular discs 
with radial slots at an angle a to each other rotate on a common 
axis at a distance / apart in an evacuated vessel (Fig. 74). A 
molecular beam from the furnace F passes through the diaphragm 
D to the discs. A molecule which passes through the slot in the 
first disc with velocity ν will reach the second disc after a t ime 
t = llv. In this time the disc turns through an angle Cíí = fll/v, 
where Ω is the angular velocity of rotation. T h u s only molecules 
whose velocity is such that fill ν = a will pass through the slot 
in the second disc and leave a t race on the screen 5 . By varying 
the speed of rotation of the discs and measuring the density of 
the deposit on the screen we can find the relative numbers of 
particles with various velocities. 

1 

F I G . 7 4 . 

3 

F I G . 7 5 . 

T h e Maxwellian distribution has also been tested experi
mentally by observing the deviation of a molecular beam under 
gravity. A toms of caesium heated in the furnace 1 (Fig. 75) and 
emerging from an aper ture in it enter an evacuated vessel. A 
narrow beam selected by the diaphragms 2 and 3 is deflected 
downwards by gravity and is collected by a detector in the form 
of a heated thin horizontal tungsten wire 4 which can be placed 
at various distances h below the axis of the appara tus ; the 
caesium atoms which strike the wire leave it as positive ions 
which are collected by a negatively charged plate. T h e deflection 
h of an atom depends on its velocity v; in the exper iments , this 
deflection was some tenths of a milHmetre with a beam path 
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length of 2 metres . By measuring the beam intensity for var ious 
values of h we can find the velocity distribution of the a toms in 
the beam. 

§56. Work and quantity of heat 
When a body expands , it moves the surrounding bodies , i.e. 

does work on them Let us consider, for example, a gas beneath 
a piston in a cyHndrical vessel. If the gas expands and moves 
the piston an infinitesimal distance dh, it does work dA on the 
piston, where dA = F dh and F is the force exerted by the gas 
on the piston. But, by definition, F = pS, where ρ is the gas 
pressure and S the area of the piston. H e n c e dA = pSdh, and 
since Sdh is the increase dV in the volume of the gas we have 
finally 

dA=p dV. 

This simple and important formula determines the work done 
in an infinitesimal change in the volume of a body W e see that 
this work depends only on the pressure and the total change in 
volume, and not on the shape of the body. [To avoid misunder
standing it should be mentioned at once that this assertion does 
not apply to solids; see §101.] 

T h e work dA is positive when the body expands (dV > 0), and 
the body does work on the surrounding medium. When the body 
is compressed (dV < 0), on the other hand, work is done on it 
by the surrounding bodies, and with our definition of dA this 
corresponds to negative work. 

T h e work done in a given process can be represented by a 
geometrical analogy if the process is shown graphically as a 
curve in the coordinates ρ and V. Fo r example, let the change in 
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F I G . 7 7 . 

One frequently encounters cyclic processes, i.e. those in which 
the body finally returns to its original s tate . F o r example , let a 
gas be subjected to the process shown by the closed curve Xalbl 
in Fig. 77. On the curve ial the gas expands and does work 
represented by the area under that curve ; on the curve 261 the 
gas is compressed, and the work done is therefore negative and 
equal in magnitude to the area under the curve 2b\. T h e total 
work done by the gas is consequent ly equal to the difference of 
these areas , i.e. is represented by the hatched area in Fig. 77 
lying within the closed curve. 

T h e total work A done by the body in expansion from volume 
Vi to V2 is given by a particularly simple expression when the 
process occurs at constant pressure . In this case we clearly have 

A=p(V2-Vi\ 

We may also determine the work done in an isothermal 
expansion of an ideal gas. F o r one gram-molecule of gas the 
pressure ρ = RT¡V\ hence 

dA=pdV= {RT/V)dV =RT d logeV; 

pressure of a gas as it expands be shown by the curve 12 in Fig. 
76. When the volume increases by dV, the work done by the 
gas is pdV, i.e. the area of the infinitely narrow rectangle re
presented by the hatched area in the diagram. T h e total work 
done by the gas in expanding from volume to V2 therefore 
consists of the elements of work dA whose sum is represented 
by the area \2V2V1 below the curve and be tween the two ext reme 
vertical lines. T h u s the area in the diagram gives at once the 
work done by the body in the process considered. 
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since the temperature remains constant , we can write dA = 
d(RT\ogeV). Hence it follows that the work A is equal to the 
diiference between the values of RT log^ V at the end and the 
beginning of the process , i.e. 

A = RTlogAV2lViy 

If the body gains no energy from external sources , the work 
done in expansion is done at the expense of its internal energy. 
This energy, which we denote by E, includes the kinetic energy 
of the thermal motion of the a toms of the substance and the 
potential energy of their mutual interaction. 

However , the change in the internal energy of the body in a 
given process is not in general equal to the work done. T h e 
reason is that the body may also gain (or lose) energy by direct 
transfer from other bodies without doing mechanical work. T h e 
energy thus gained is called the quantity of heat gained by the 
body; we shall regard it as positive if the body gains heat and 
negative if it loses heat. 

T h u s the infinitesimal change in the internal energy of the 
body consists of two parts : an increase due to the quanti ty of 
heat gained by the body (which we denote by dQ) and a decrease 
due to the work dA done by the body. H e n c e we have 

dE = dQ-pdV. 

This important relation expresses the law of conservat ion of 
energy for thermal processes and is called in this connect ion 
the first law of thermodynamics. 

It must be emphasised that the work and the quanti ty of heat 
depend not only on the initial and final states of the body but also 
on the path along which the change in the state of the body takes 
place. F o r this reason we cannot speak of the ' 'quanti ty of heat 
contained in a b o d y " and regard the amount of heat concerned 
in the process as the difl'erence of this quantity in the final and 
initial states. T h e fact that such a quantity has no meaning is 
especially clear if we consider a cyclic process , where the body 
returns to its initial state but the total amount of heat gained 
(or lost) is certainly not zero. 

Only the internal energy Ε is what is called a function of the 
state: in any given state, the body has a definite energy. T h e 
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total change in the energy of a body during a process is therefore 
a quantity depending only on the final and initial s tates, namely 
the difference E^ — E^ be tween the energies in these states. T h e 
separation of this change into a quanti ty of heat Q and an amount 
of work A is not unique, but depends on the path taken in going 
from the initial to the final state. In particular, in a cyclic process 
the total change in energy is zero; the quanti ty of heat Q gained 
by the body and the work A done by it are not zero, but Q = A. 

In thermal measurements a special unit of energy, the calorie 
(cal), was used until recently. T h e definition of this unit as the 
quantity of heat needed to heat 1 g of water by 1° is insufficiently 
exact, since the specific heat of water depends slightly on the 
temperature . In consequence , various definitions of the calorie 
existed which differed somewhat in value. T h e relation be tween 
the calorie and the joule is approximately 

1 cal = 4-18 J. 

If the temperature of one gram-molecule of a substance is 
raised by dT when it gains a quantity of heat dQ, the ratio 

C = dQidT 

is called the specific heat of the substance. This definition, 
however , is inadequate by itself, since the quanti ty of heat 
necessary depends not only on the change in temperature but 
also on the other conditions under which the heating takes place: 
it is necessary to state how other propert ies of the substance be
sides the temperature are affected. Because of this indefiniteness, 
various definitions of the specific heat are possible. 

T h e most usual in physics are the specific heat at constant 
volume Cy and the specific heat at constant pressure Cp, which 
give the quantities of heat when the substance is heated under 
conditions such that its volume and pressure respectively remain 
constant. 

If the volume remains constant , then dV = 0 and dQ = dE, i.e. 
all the heat is used to increase the internal energy. We can 
therefore write 

Cy=idEldT)y. 
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T h e suffix V to the derivative signifies that the differentiation is 
to be taken for a constant value of V. This indication is necessary , 
since the energy of a body depends , in general, not only on the 
temperature but also on other quantities describing the state of 
the body, and the result of the differentiation therefore depends 
on which of these quantities is assumed constant . 

If the pressure remains constant on heating, then heat is used 
not only to increase the internal energy but also to do work. In 
this case the quantity of heat may be written in the form 

dQ = dE^pdV=d{E^pV), 

since ρ = constant . We see that the quanti ty of heat is equal to 
the change in the quantity 

W = E-\^pV. 

This is called the enthalpy, heat function or heat content; like 
the energy, it is a definite function of the state of the body. T h u s 
the specific heat at constant pressure may be calculated as the 
derivative 

Cp = (dWIdT)^. 

T h e specific heat Cp is always greater than C^: 

> Cv. 

At first sight it might appear that this inequahty is due simply 
to the work which must be done by a body in expanding on 
heating at constant pressure . This is not so, however ; the in
equality appHes also to the few substances which contract on 
heating, as well as to those which expand. It is in fact a con
sequence of a very general theorem of thermodynamics : an 
external interaction which removes a body from a state of 
thermal equilibrium brings about processes in it which, as it 
were , try to reduce the effect of this interaction. F o r example, 
heating a body brings about processes which absorb heat, 
whereas cooling brings about processes in which heat is evolved. 
This is called Le Chatelier's principle. 
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Let us imagine that a body in equilibrium with an external 
medium receives a quantity of heat in such a way that its volume 
remains unchanged and its tempera ture increases by an amount 
(ΔΓ)κ . T h e pressure of the body will also be changed, and the 
equilibrium condition, according to which this pressure must be 
equal to that of the surrounding medium, will no longer be 
satisfied. According to Le Chatel ier 's principle, the restorat ion 
of equilibrium, which would restore the original pressure , must 
be accompanied by cooling. In other words , the change (ΔΓ)ρ 
in the temperature of the body at constant pressure is less than 
the change (M)v at constant volume (for a given quanti ty of 
heat gained by the body). This means that , for a given change in 
temperature , more heat is necessary at constant pressure than 
at constant volume. 

In what follows we shall several t imes make use of Le Chate-
lier's principle to decide the direction in which a quanti ty changes 
when another quantity is varied. 

§57. The specific heat of gases 
Since the molecules of an ideal gas are assumed not to interact 

with one another, the change in their mean distance apart when 
the volume of the gas varies cannot affect its internal energy. 
In other words , the internal energy of an ideal gas is a function 
only of its temperature , and not of its volume or pressure . H e n c e 
the specific heat Cy = dEldT of the gas also depends only on 
the temperature . 

T h e same is t rue of the specific heat Cp = dW/dT, and there is 
a very simple relation between the two specific heats of the gas. 
F rom the equation of state pV= RT, the enthalpy of one mole 
of gas is related to its internal energy by 

W = E-l·pV=E-l·RT. 

Diflferentiating this expression with respect to tempera ture , we 
obtain 

Cp=Cy + R, 

i.e. the difference of the molar specific heats of the gas, Cp — Cy, 
is equal to the gas constant R = 8-3 J/deg.mole = 2 cal/deg.mole. 
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It is easy to find the specific heat of a monatomic gas (such as 
the noble gases). In this case the internal energy of the gas is 
simply the sum of the kinetic energies of the translational motion 
of the particles. Since, by the definition of temperature , the mean 
kinetic energy of one particle is ikT, the internal energy of one 
mole of gas is 

E = iNokT = iRT. 

T h e specific heats are therefore 

Cy = iR= 12-5J/deg.mole, 

Cp = iR = 20-8 J/deg.mole. 

These values are quite independent of temperature . 
We shall see later that in many processes an important property 

of the gas is the ratio of the specific heats Cp and Cy, usually 
denoted by y: 

y = CJCy. 

F o r monatomic gases 

γ = 5/3 = 1-67. 

T h e specific heat of diatomic and polyatomic gases is more 
complicated than that of monatomic gases. Their internal energy 
consists of the kinetic energies of translation and rotation of 
the molecules and the energy of the a toms vibrating within the 
molecule. Thus each of these three types of motion makes a 
certain contribution to the specific heat of the gas. 

Here we may return to the definition of tempera ture given in 
§50. Since a molecule has three degrees of freedom in its t rans
lational motion, we can say that each of them corresponds to a 
mean kinetic energy ikT. According to classical mechanics , the 
same result would be obtained for every degree of freedom of the 
molecule, whether for translational motion, rotation, or vibration 
of the atoms within it. We know also that in the vibrational 
motion the mean value of the potential energy is equal to the 
mean value of the kinetic energy Thus , according to classical 
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mechanics, the thermal potential energy of each degree of 
freedom of the vibration of a toms within the molecule would 
also be ^kT. Thus we find that any gas should have a constant 
specific heat independent of tempera ture and determined entirely 
by the number of degrees of freedom of the molecule (and 
therefore by the number of a toms in it). 

In reality, however , the vibrational motion of the a toms in 
the molecule affects the specific heat of the gas only at sufficiently 
high temperatures . T h e reason is that this motion remains of the 
nature of "zero-point v ibrat ions" , not only at low tempera tures 
but also at comparatively high tempera tures , on account of 
the comparat ively large energy of these vibrations. T h e "ze ro-
point energy" , by its nature , is independent of tempera ture , and 
therefore does not affect the specific heat. F o r example , in the 
molecules of diatomic gases (nitrogen, oxygen, hydrogen etc.), 
the vibrations of the a toms within the molecules are fully "in
c luded" in the motion only at tempera tures of the order of 
thousands of degrees; at lower tempera tures their contribution 
to the specific heat decreases rapidly and is practically zero 
even at room temperature . 

T h e zero-point energy of rotation of molecules is very small, 
and thus classical mechanics is very soon applicable to this 
motion: at temperatures of a few degrees Kelvin for diatomic 
molecules, with the exception of the lightest gas, hydrogen, for 
which a temperature of about 80°K is necessary. 

In the neighbourhood of room tempera ture , the specific heat 
of diatomic gases is therefore due only to the translational and 
rotational motion of the molecules and is very close to its 
theoretical constant value (in classical mechanics) 

C r = f/^ = 20-8 J /deg.mole, 

C p = 29· 1 J/deg.mole. 

The ratio of specific heats γ = 7/5 = 1 ·4. 
We may note that in the "quan tum region" the mean energies 

of the thermal rotational and vibrational motions , and therefore 
the specific heat of the gas, depend not only on the tempera ture 
but also on the " individual" propert ies (moments of inertia and 
vibrational frequencies) of the molecule. [It is for this reason 

Pure Mathematical Physics



174 H E A T [ ν π 

V\dp )T 

the derivative of the volume with respect to the pressure is taken 
at constant tempera ture , i.e. describes a process of isothermal 
compression. This coefficient is negative, i e. the volume decreases 
when the pressure increases, and the minus sign is used in order 
to make the compressibiHty a positive quantity. T h e dimensions 
of κ are evidently the reciprocal of those of pressure . 

As examples , we may give the values of the compressibil i ty 
per bar for various liquids at room tempera ture and atmospheric 
pressure: 

that these energies, unHke the energy of the translational motion, 
cannot be used for a direct definition of temperature.] 

T h e specific heat of polyatomic gases is even more complicated. 
T h e atoms in a polyatomic molecule can execute oscillations of 
various types with various zero-point energies. As the temper
ature rises, these oscillations are successively " inc luded" in 
the thermal motion, and the specific heat of the gas increases 
accordingly. It may happen, however , that the inclusion of all 
the oscillations is never achieved, since the molecules may 
disintegrate at high temperatures . 

It may again be recalled that the whole of the above discussion 
is for the case of an ideal gas. At high pressures , when the 
propert ies of the gas become appreciably different from those of 
an ideal gas, its specific heat is also changed, because of the 
contribution to the internal energy arising from the interaction 
between the molecules. 

§58. Solids and liquids 
T h e simplicity of the thermal propert ies of an ideal gas, which 

allows a general equation of state for all gases to be derived, is 
due to the fact that the interaction between molecules in the 
gas is unimportant . In solids and liquids, the interaction be tween 
the molecules is of primary importance; the thermal propert ies 
of these substances therefore differ considerably, and it is 
impossible to establish any general equation of state. 

Solids and liquids, unlike gases, are not readily compressed. 
T h e compressibility of a substance is usually defined as 
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the suffix ρ to the derivative means that the body is heated at 
constant pressure . 

T h e majority of bodies expand on heating, and the coefficient 
a is positive. This is to be expected, since the greater thermal 
motion tends to move the molecules apart . Never the less , there 
are exceptions to this rule. F o r example , water contracts on 
heating in the range from 0 to 4°C. Liquid helium also contracts 
on heating at temperatures below 2·19°Κ (helium I I ; see §74). 

As examples , we may give the coefficients of thermal expan
sion of various liquids at room tempera ture : 

Mercury 1 -8 X 10"^ deg-^ Alcohol 10-8 x lO"'* deg-^ 
Water 2-1 x 10"^ Ether 16-3 x 10"^ 

[For comparison, the coefficient of thermal expansion of gases . 

Mercury 0-4 x 10"^ bar-^ Alcohol 7-6 x lO'^ bar"! 
Water 4-9 x 10-^ Ether 14-5 x 10'^ 

The compressibilit ies of most solids are even smaller: 

Diamond 0-16x10"^ bar~^ Aluminium 1 -4 X 10~^ bar~i 
Iron 0-61 X10"« Glass 2-7 x 10"« 
Copper 0-76 x 10"« Caes ium 62 x 10"« 

For comparison, let us find the compressibili ty of a gas. In iso
thermal compression, the volume of a gas decreases in inverse 
proportion to the pressure: V= RTlp. Substituting this expres
sion in the foregoing definition of the compressibili ty κ, we have 
after the differentiation 

K = Hp. 

At a pressure of 1 bar, the compressibil i ty of the gas is 1 bar~^ 
Another quanti ty used to describe the thermal propert ies of 

soUds and liquids is the coefficient of thermal expansion defined 
as 
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obtained by substituting V=RTlp in the definition of a , is 
a = \IT; for Τ = 293°K, α = 3-4 X IQ-^ deg-^.] 

T h e coefficient of thermal expansion of solids is still smaller: 

Iron 3-5 X lO-^deg-^ 
Copper 5 0 x 1 0 - ^ 
Glass 2-4 to 3-0 X 10-^ 

Invar (an alloy of 6 4 % iron and 3 6 % nickel) and fused quar tz 
have especially small values of α (3 x 10~« and 1-2 X 10"« respec
tively). These substances are widely used in making parts of 
instruments in which it is desirable to avoid dimensional changes 
when the temperature varies. 

It has been mentioned in §45 that the thermal expansion of 
crystals (other than cubic) occurs diff"erently in diff'erent direc
tions. This difference may be very considerable. F o r example , 
in the thermal expansion of a crystal of zinc, the linear dimension 
in the direction of the hexagonal axis increases 4-5 times faster 
than those in the directions perpendicular to this axis. 

T h e specific heat of solids and liquids, like that of gases, 
usually increases with temperature . T h e specific heat of a solid 
depends on the energy of a toms executing small thermal oscilla
tions about their equilibrium positions. When the tempera ture 
rises, this specific heat tends to a certain limit corresponding to 
the state where the oscillations of the atoms can be treated on 
the basis of classical mechanics . Since the motion of the a toms is 
entirely oscillatory, a mean energy kT must correspond to each 
of its three degrees of freedom: ikT from the mean kinetic energy 
and ikT from the mean potential energy (as described in §57). 
T h e total mean energy per atom in a solid would then be 3kT. 

This limit, however , is never reached for compounds of any 
complexity, since the substance melts or decomposes before this 
occurs . At ordinary temperatures the limiting value of the 
specific heat is reached for many elements , so that the specific 
heat of one gram-atom of a solid element is approximately 

C=3R = 25 J /deg.mole = 6 cal/deg.mole; 

this is sometimes called Dulong and Petit's law. 
In discussing the specific heat of a solid we deliberately do not 

distinguish between the specific heats at constant pressure and 
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at constant volume. T h e measured specific heats are usually 
those at constant pressure , but in solids the diff'erence be tween 
Cp and Cy is very small (e.g. for iron CplCy= 1-02). This is 
because of the smallness of the coefficient of thermal expansion 
for solids: there is a general relation be tween the difference of 
specific heats for any body, the coefficient of thermal expansion 
a and the compressibility κ: 

c^—Cy = Τα^/ρκ, 

where ρ is the density of the substance and Cp and Cy the specific 
heats per gram. Thus we see that the difference Cp — Cy is propor
tional to the square of the coefficient a. 

As the temperature decreases , the specific heat of a solid also 
decreases and tends to zero at absolute zero. This is a conse
quence of a remarkable general theorem (called Nernsfs theorem), 
according to which, at sufficiently low tempera tures , any quanti ty 
representing a property of a solid or liquid becomes independent 
of temperature . In particular, as absolute zero is approached, the 
energy and enthalpy of a body no longer depend on the 
tempera ture ; the specific heats Cp and Cy, which are the deriva
tives of these quantities with respect to tempera ture , therefore 
tend to zero. 

It also follows from Nerns t ' s theorem that , as Γ ^ 0, the 
coefficient of thermal expansion tends to zero, since the volume 
of the body ceases to depend on the tempera ture . 
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§59. Adiabatic processes 
Let us now consider some simple thermal processes . A very 

simple process is the expansion of a gas into a vacuum: the gas 
is initially in a part of a vessel separated from the rest of the vessel 
by a partition, and then an opening is made in the partition and 
the gas fills the whole vessel. Since the gas does no work in such 
an expansion, its energy remains constant , i.e. the energy of 
the gas before the expansion is equal to its energy E2 after the 
expansion: 

El = E2. 

F o r an ideal gas the energy depends , as we know, only on the 
tempera ture ; thus , since the energy is constant , it follows that 
the temperature of an ideal gas remains constant when it expands 
into a vacuum. However , the tempera ture of gases which are 
not nearly ideal changes on expansion into a vacuum. 

There is another process of expansion of a gas called an 
adiabatic process , which differs very greatly from expansion 
into a vacuum. Adiabatic processes are of great importance, and 
will now be considered in detail. 

T h e typical feature of an adiabatic process is that the gas 
remains continuously under an external pressure equal to the 
pressure of the gas itself. Another condition for an adiabatic 
process is that throughout the process the gas remains thermally 
isolated from the external medium, i.e. does not gain or lose 
heat. 

It is simplest to imagine the adiabatic expansion (or compres
sion) of a gas in a thermally isolated cylindrical vessel with a 
piston. When the piston is moved out sufficiently slowly, the gas 
expands behind it and at every instant has a pressure correspond-

1 7 8 
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ing to the total volume which it then occupies . He re "sufficiently 
slowly" means , therefore, so slowly that the gas is able to estab
lish thermal equilibrium corresponding to every instantaneous 
position of the piston. If, on the other hand, the piston is moved 
out too rapidly, the gas will not be able to follow it, and a region 
of reduced pressure will exist beneath the piston, into which 
the remaining gas will expand; similarly, if the piston is moved in 
too rapidly, a region of increased pressure will exist. Such 
processes would not be adiabatic. 

In practice, this condition of s lowness is very easily fulfilled 
in the case considered. Analysis shows that the condition would 
not be fulfilled only if the rate of movement of the piston were 
comparable with the velocity of sound in the gas. Thus , in the 
practical carrying out of an adiabatic expansion, the principal 
condition is that of thermal isolation, which requires that the 
process should be "sufficiently fast": the gas must not be able to 
exchange heat with the external medium during the process . It 
is clear that this condition is entirely compatible with the condi
tion of "sufficient s lowness" stated above; it depends on the 
thoroughness of the thermal isolation of the vessel and may be 
said to be of secondary importance and unrelated to the actual 
nature of the process . F o r this reason an adiabatic process is 
regarded in physics as one which primarily satisfies the condition 
of "sufficient s lowness" , the latter being fundamental . W e shall 
return to a discussion of this condition in §62. 

In an adiabatic process we can not say that the internal energy 
of the gas itself remains constant , since the gas does work when 
it expands (or work is done on it when it is compressed) . T h e 
general equation of an adiabatic process is obtained by putting 
the quantity of heat dQ equal to zero in the relation dQ = 
dE 4- pdV, in accordance with the condit ion of thermal isolation. 
Thus an infinitesimal change in the state of a body in an adiabatic 
process is described by the equation 

dE^pdV=0, 

Let us apply this equation to the adiabatic expansion (or 
compression) of an ideal gas; for simplicity, all quantit ies will 
refer to one mole. T h e energy of an ideal gas is a function only 
of its temperature , and the derivative dEldT is the specific heat 
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; in the equation of the adiabatic process , we can therefore 
replace dE by Cy dT: 

Cy dT-hpdV=^0. 

Substituting ρ = RTIV and dividing the equation by Γ, we obtain 
the relation 

CydTIT + RdVIV=0. 

Let us assume further that the specific heat of the gas is 
constant in the temperature range considered; for monatomic 
gases this is always true, and for diatomic gases it is t rue over a 
wide range of temperatures . Then the above relation may be 
written 

d(Cy\ogeTi-R\og,V) = 0, 

whence 

Cy logf,T-hR logeV = constant 

or, in power form, 

T^vyR = constant. 

Finally, since for an ideal gas Cp — Cy = R, the l/Cy power of 
this equation may be written 

= constant , 

where γ = CjCy. 
We see that in an adiabatic process the temperature and volume 

of an ideal gas vary in such a way that the product TVy-^ remains 
constant . Since γ is always greater than unity, γ — 1 > 0, and 
therefore an adiabatic expansion is accompanied by a cooling 
of the gas, and an adiabatic compression by heating. 

On combining the above equation with the formula pV = RT 
we can derive a similar relation between the tempera ture and the 
pressure in an adiabatic process: 
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ρ = constant 
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between the pressure and the volume; this last relation is called 
the equation of Poisson's adiabatic. 

In isothermal expansion of a gas, its pressure decreases in 
inverse proport ion to the volume V, In adiabatic expansion, we 
see that the pressure decreases in inverse proport ion to V^, i.e. 
more rapidly (since y > 1). If these processes are represented 
graphically by plotting ρ against V as two curves , an isothermal 
and an adiabatic, intersecting at a point po, which represents 
the initial state of the gas, then the adiabatic curve will be s teeper 
than the isothermal (Fig. 78). 

F I G . 7 8 . 

This property may be stated in another manner by considering 
the change in volume as a function of pressure (i.e. by turning 
Fig. 78 through 90°) and representing this relation by the com
pressibility κ = —{\lV)dVldp\ see §58, where the isothermal case 
was considered. It is then easy to see that the adiabatic com
pressibility of a gas is less than its isothermal compressibil i ty: 

This inequality, derived here for gases, is in fact valid for all 
bodies, and follows from Le Chatel ier 's principle. 
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On the other hand, another property of adiabatic processes in 
a gas, the heating on compression, is not a universal proper ty of 
adiabatic compression of all bodies. This is likewise seen from 
Le Chatel ier 's principle. If a body is compressed without gaining 
any heat (which itself would affect the tempera ture of the body) , 
the temperature of the body will change so as to oppose the com
pression. Fo r the great majority of bodies , which expand on 
heating, this means that the tempera ture will rise on adiabatic 
compression (and conversely will fall on expansion). But it is 
clear from this discussion that, if the volume of a body decreases 
on heating, an adiabatic compression of the body will be 
accompanied by cooling. 

§60. Joule-Kelvin processes 

Processes in which a gas or liquid passes steadily from one 
pressure to another without exchange of heat with the surround
ing medium are of considerable interest. By "s teadi ly" we here 
mean that the two pressures remain constant throughout the 
process . 

Such a process is in general accompanied by a flow of gas 
(or liquid) with some velocity different from zero , but this 
velocity can be made very small by causing the gas to go from 
one pressure to the other through an obstruct ion which greatly 
impedes the flow, such as a porous partition or a small hole. 

= 

(α) 

Ρ ^ Ρ Pi _J 

(b) 
2 

F I G . 7 9 . 

T h e steady passage of a thermally isolated gas from one pres
sure to another under conditions where the gas does not acquire 
any appreciable velocity is called a Joule-Kelvin process. This 
process may be diagrammatically represented by the passage of 
a gas in a cylindrical vessel through a porous partition Ρ (Fig. 
79a, b), the pressures Pt and P2 on each side of the partition being 
maintained constant by pistons 1 and 2. 
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Let the gas initially occupy a volume Fj be tween piston 1 and 
the partition Ρ (Fig. 79a). Piston 1 is now moved in and piston 
2 moved out, keeping the pressures and /?2 acting on the pistons 
unchanged. T h e gas, passing at a low velocity through the porous 
partition, will finally occupy a volume V2 be tween the partit ion 
and piston 2, and will be at a pressure p^ (Fig. 79b). 

Since in this process there is no exchange of heat with the 
surrounding medium, the work done by the pistons must be equal 
to the change in the internal energy of the gas. T h e gas pressures 
remain constant during the process , and therefore the work done 
by the piston 1 in displacing the gas from the volume is simply 
the product ρ^Υχ. T h e gas passing through the partit ion does 
work on the piston 2. T h u s the total work done by the pistons on 
the gas is /^iKj—772^2, and this, as already stated, must be equal 
to the increase in the internal energy of the gas: 

PiVi-P2y2 = E2-E1, 

where and £2 are the internal energies of a given quanti ty of 
the gas in the initial and final s tates. H e n c e 

or 

W, = W2, 

where W = E-{-pV is the enthalpy. T h u s the enthalpy of the gas 
is conserved in a Jou le -Kelv in process . 

F o r an ideal gas both the energy and the enthalpy depend only 
on the temperature . T h u s the equality of the enthalpies implies 
that the temperatures are equal: if an ideal gas undergoes a 
Jou le -Kelv in process , its tempera ture remains unchanged. 

In real gases the tempera ture changes in a Jou le -Ke lv in 
process , and may do so by a considerable amount . F o r example , 
when air at room tempera ture expands from 200 atm pressure to 
1 atm, it is cooled by about 40°. 

At sufficiently high tempera tures , all real gases are heated by 
expansion in a Jou le -Ke lv in process , while at lower tempera tures 
(and not too high pressures) they are cooled; there is therefore a 
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temperature (called the inversion point) above which the change 
in temperature in a Jou le -Kelv in process is of opposi te sign. 
T h e position of the inversion point depends on the pressure , and 
is different for different gases. F o r example , air is cooled in a 
Jou le -Kelv in process at room tempera ture , but to achieve this 
effect in hydrogen it must first be cooled to about 200°K or below, 
and for helium a tempera ture of 40°K is necessary. 

T h e change in tempera ture in a Jou le -Kelv in process is widely 
used in technology for the liquefaction of gases. T h e gas velocity 
is usually lowered by means of a narrow opening called an 
expansion valve. 

§61. Steady flow 

In a Jou le -Kelv in process , the gas passes steadily from one 
pressure to the other, and its velocity is artificially made small 
by means of friction. However , the results obtained by consider
ing this process are easily generaHsed to the case of any steady 
thermally isolated flow of gas (or liquid) with non-zero velocity. 
T h e only difference is that the kinetic energy of the flowing gas 
can not now be neglected. T h e work done on the gas increases its 
energy, which now includes the kinetic energy of its motion as a 
whole as well as its internal energy. T h u s , for a s teady flow of 
gas or liquid we have 

Wv^ -hE-hpV= constant 

or 

iMí^^+ constant , 

where W and Μ are the enthalpy and the mass of a given quanti ty 
of substance and ν the velocity of flow. T h e above equation 
signifies that the quantity iMr^H- W is the same for a given mass 
of substance no matter where it is in the flow. 

Where it may be necessary to take into account also the poten
tial energy in a field of gravity in the flow of a liquid (the weight 
is unimportant in gas flow), we can similarly write 

iMv^-\- Mgz-^ Ε-l· pV = constant , 

where ζ is the height of a given point in the flow. 
Let us assume that the motion in the flow is not accompanied by 

any appreciable friction, either within the flowing substance 
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itself or against any external obstacles ; this is in a sense the 
opposite of a Jou le -Kelv in process , where friction plays an 
important part. U n d e r these conditions we can assume not only 
that the flow as a whole is thermally isolated from the external 
medium (as we have assumed throughout) but also that during 
the motion each individual element of subs tance is thermally 
isolated; if there were appreciable friction this would not be so, 
since frictional heat would be generated within the flow. Tha t is, 
we may assume that during the motion each element of substance 
expands or contracts adiabatically. 

Let u's consider, for example, the outflow of gas under these 
conditions from a vessel in which it is at a pressure ρ different 
from the atmospheric pressure p ^ . If the outflow takes place 
through a sufficiently small opening, the velocity of the gas within 
the vessel may be taken as zero. T h e velocity ν of the outflowing 
jet is given by the equation 

Wo+{v^ = W; 

here we have taken the mass Μ as 1 g, so that W and WQ are the 
enthalpies per gram of gas within the vessel and in the outflowing 
jet . If the gas is assumed ideal and its specific heat independent 
of tempera ture , then the formula Cp = dWidT or dW = CpdT 
(cf. § 56) shows that Wo-W = Cp{To- Γ ) , and hence 

t ; V 2c^(T-T,). 

Finally, the temperature Γο in the outflowing je t can be expressed 
in terms of the temperature Τ of the gas in the vessel by means 
of the equation of adiabatic expansion of the gas derived in §59; 
this states that the product Tp~^^~^^'^ is constant : 

To = Τ{ροΙρϊ^-'^"^' 

Thus we finally obtain the following formula for the velocity of 
outflow of the gas: 

v' = 2cpT[(pJpY'-'^iy-\], 

T h e flow of liquids generally occurs without any appreciable 
change in their volume, owing to their comparat ively small 
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compressibility. In other words , a flowing liquid may be regarded 
as incompressible and of constant density. 

T h e equation of s teady (frictionless) flow of such a liquid is 
especially simple. In this case the general equation of an adiabatic 
process , dE + pdV= 0, reduces to dE = 0 simply, since dV= 0 
owing to the incompressibiHty of the liquid. Tha t is, the energy 
Ε remains constant and may therefore be omitted from the left-
hand side of the equation 

iMv^ + £ + + M g z = constant . 

Dividing this equation by the mass Μ and noting that the ratio 
MlV is the density ρ of the liquid, we finally deduce that the 
following quantity remains constant throughout a thermally 
isolated steady frictionless flow of an incompressible liquid: 

iv^ -h pip gz = constant . 

This is called Bernoulli's equation. 
A s an example, let us consider the motion of a Hquid in a pipe 

of variable cross-section, which for simplicity we shall a ssume 
to lie horizontally. Then the force of gravity has no eff^ect on the 
motion, and Bernoulli 's equation gives 

iv^ + pip = ivo^ + po/p, 

where and υ are the flow velocities at any two cross-sect ions 
of the tube, and po and ρ the corresponding pressures . If the 
areas of these two cross-sections are SQ and 5 , the volumes of 
liquid passing through them per unit t ime are VQSQ and vS, and 
since the liquid is assumed incompressible vS = VQSO, or 

V = VQSQIS, 

i.e. the velocity of an incompressible Hquid at any cross-section 
is inversely proportional to its area. Substituting this expression 
for V in BernouUi's equation, we obtain a relation be tween the 
pressure and the cross-sectional area: 

p = Po-\-ip(vo^-v^) 
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We see that the pressure is greater in the wider parts of the pipe 
than in the narrower ones . 

Let us now apply Bernoulli 's equation to determine the velocity 
of a je t of Hquid leaving a vessel through a small opening. Since 
the area of the opening is assumed small in compar ison with the 
cross-section of the vessel , we may neglect the fall in the level 
of the liquid in the vessel. Using also the fact that the pressure 
on the surface of the liquid in the vessel and the pressure in the 
je t are the same, and equal to the a tmospher ic pressure , we 
obtain from Bernoulli 's equation 

where ν is the velocity of the outflowing je t , and Ζ2 and Zi the 
heights of the surface of the liquid in the vessel and the point of 
outflow of the liquid; hence 

υ = V(2gh), 

where h = Z2 — Zu This formula, called TorricellVs formula, 
shows that the velocity of the outflowing liquid from a small 
aper ture is the same as the velocity of fall of a body from a 
height h which is equal to the height of the liquid in the vessel 
above the aperture. 

§62. Irreversibility of thermal processes 
T h e mechanical movements of material bodies , occurring in 

accordance with the laws of mechanics , have the following 
remarkable property. Whatever the motion of a body, the reverse 
motion is always possible, i.e. the motion in which the body passes 
through the same points in space with the same velocities as in 
the original motion, but in the opposi te direction. F o r example , 
let a body be projected in the field of gravity at a certain angle to 
the horizontal; it will describe a certain trajectory and fall to the 
ground at some point. If now the body is projected from this 
point at the angle at which it fell and at the corresponding velocity, 
it will describe the same trajectory in the opposi te direction and 
fall to its original position (if air friction may be neglected). 

This reversibility of mechanical motions may be alternatively 
formulated by saying that they are symmetrical as regards inter-
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changing the future and the past , i.e. with respect to t ime reversal . 
T h e symmetry of mechanical motions follows at once from the 
equations of motion themselves , since when the sign of the t ime 
is reversed so is that of the velocity, but the acceleration is left 
unchanged. 

T h e situation is quite different as regards thermal phenomena . 
If a thermal process takes place, then the reverse process (i.e. the 
process in which the same thermal states are t raversed in the 
opposite order) is in general impossible. T h u s thermal processes 
are as a rule irreversible. 

F o r example, if two bodies at different temperatures are 
brought into contact , the hotter body will transmit heat to the 
colder body, but the reverse process (a spontaneous direct 
transfer of heat from the colder to the hotter body) never occurs . 

T h e expansion of a gas into a vacuum, described in §59, is 
likewise an irreversible process . T h e gas spreads through the 
opening on both sides of the partition, but without external 
interference it will never collect spontaneously in one half of the 
vessel again. 

Any system of bodies left to itself tends to reach a state of 
thermal equilibrium, in which the bodies are at relative rest, with 
equal temperatures and pressures . Having reached such a state, 
the system will not of its own accord leave that state. In o ther 
words , all thermal phenomena accompanied by processes of 
approach to thermal equilibrium are irreversible. 

Fo r instance, all processes accompanied by friction be tween 
moving bodies are irreversible. T h e friction causes a gradual 
slowing down of the motion (the kinetic energy being conver ted 
into heat) , i.e. an approach to a state of equilibrium in which 
there is no motion. Fo r this reason, in particular, a Jou le -Ke lv in 
process , in which the gas passes through an obstacle with a large 
amount of friction, is irreversible. 

All thermal processes occurring in Na tu re are to some extent 
irreversible. In some cases , however , the degree of irreversibihty 
may be so slight that the process may be regarded as reversible 
with sufficient accuracy. 

It is clear from the foregoing that, in order to achieve rever-
sibiHty, it is necessary to eliminate from the system as far as 
possible all processes which consti tute an approach to thermal 
equilibrium. F o r example, there must be no direct transfer of 
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heat from a hotter to a colder body and no friction in the motion 
of bodies. 

An example of a process which is reversible to a high degree 
(and, in the ideal case , perfectly reversible) is the adiabatic ex
pansion or compression of a gas described in §59. T h e condition 
of thermal isolation excludes a direct exchange of heat with the 
surrounding medium. T h e "sufficiently s low" movement of the 
piston ensures that there are no irreversible processes of expan
sion of a gas into the vacuum which would be produced behind 
a too rapidly moving piston, since this is what the condition of 
slowness signifies. Of course , in practice there will still remain 
some causes of irreversibility (imperfect thermal isolation of the 
vessel containing the gas; friction in the movement of the piston). 

"S lowness " is a general characterist ic of reversible processes : 
the process must be so slow that the bodies involved in it are 
able to reach at every instant the state of equihbrium which 
corresponds to the prevailing external condit ions. In the example 
of the expansion of a gas, the latter must be able to follow the 
piston and remain homogeneous throughout its volume. Com
plete reversibility could be achieved only in the ideal case of an 
infinitely slow process , and for this reason alone a process 
occurring at a finite rate cannot be completely reversible. 

We have already mentioned that , in a system of bodies in 
thermal equilibrium, no process can take place without external 
interference. This can be stated in another way: bodies in thermal 
equilibrium can do no work, since work requires mechanical 
motion, i.e. a conversion of energy into the kinetic energy of the 
bodies. 

This extremely important assert ion that work can not be 
obtained from the energy of bodies in thermal equilibrium is 
called the second law of thermodynamics. W e are always sur
rounded by considerable sources of thermal energy in a state 
close to equilibrium. An engine working merely on the energy 
of bodies in thermal equilibrium would const i tute a perpetual-
motion machine. T h e second law of thermodynamics prevents the 
construction of such a perpetual-motion machine of the second 
kind, just as the first law of thermodynamics (the law of conserva
tion of energy) prevents that of a machine of the first kind, i.e. one 
which would do work "from nothing" , without any external 
source of energy. 
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§63. The Carnot cycle 
F r o m the foregoing it follows that work can be done only by 

means of a system of bodies which are not in thermal equilibrium 
with one another. Let us imagine such a system idealised as two 
bodies at different tempera tures . If the two bodies are simply 
brought into contact , heat will pass from the hot ter to the colder 
body, but no work will be done. T h e transfer of heat from a hot ter 
to a colder body is an irreversible process , and this example 
demonst ra tes the general rule that irreversible processes prevent 
the doing of work. 

If it is desired to obtain the maximum possible work from 
given bodies, the process must be made as nearly reversible as 
possible: all irreversible processes must be avoided, and only 
processes which occur to the same extent in both directions must 
be used. 

F I G . 8 0 . 

Returning to the system of*the two bodies , we denote their 
temperatures by Γι and Τ2 (and let Τ2 > Γι) , and conventionally 
call the hot ter body a heat source , and the colder body a heat 
sink. Since direct exchange of heat be tween these bodies is not 
permissible, it is clear first of all that , in order to do work, a 
further body must be used; this will be called the working medium. 
It may be imagined as a cylindrical vessel containing gas and 
closed by a piston. 

W e shall represent the process in which the medium takes 
part , using a p F diagram (Fig. 80). Let the gas be initially at a 
tempera ture Τ2, and let its state be represented by the point A 
in the diagram. T h e working medium is now brought into contact 
with the heat source, and the gas is caused to expand; it gains a 
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certain quantity of heat from the heat source , while remaining 
at the source tempera ture Γ2 (the total quanti ty of heat in the 
heat source is assumed so large that its tempera ture is not 
changed when a small quanti ty of heat is transferred to the gas). 
Thus the gas undergoes a reversible isothermal expansion, since 
heat is transferred only be tween bodies at the same tempera ture . 
In Fig. 80 this process is shown by the isotherm ^45. 

Nex t , the working medium is removed from the heater , ther
mally isolated and further expanded, this t ime adiabatically. 
In this expansion the gas is cooled, and the expansion is cont inued 
until the tempera ture of the gas falls to the tempera ture Γχ of 
the heat sink. This process is represented in the diagram by the 
adiabatic BC, which is s teeper than the isotherm AB, since in 
adiabatic expansion the pressure falls more rapidly than in 
isothermal expansion. 

T h e working medium is now brought into contact with the 
heat sink and the gas is isothermally compressed at t empera ture 
Γι, thereby transferring a certain quanti ty of heat to the heat 
sink. Finally, the working medium is removed from the heat 
sink and the gas is adiabatically compressed to re turn it to its 
initial s ta te; for this purpose it is necessary to make the proper 
choice of the point D , i.e. the volume to which the isothermal 
compression CD is taken. 

T h u s the working medium undergoes a cycHc process , return
ing to its original state but doing a certain quanti ty of work 
represented by the area of the curvilinear quadrilateral A BCD. 
This work is done by virtue of the fact that on the upper isotherm 
the working medium takes from the heat source a greater quanti ty 
of heat than it gives to the heat sink on the lower isotherm. 
Every stage of this cycHc process is reversible, and the work 
done is therefore the maximum possible for a given quanti ty of 
heat taken from the source. 

T h e process jus t described is called a Carnot cycle. I t shows 
that, in principle, work can be done reversibly by means of two 
bodies at different tempera tures . Being the maximum possible 
amount , this work is independent of the propert ies of the working 
medium. 

T h e ratio of the work done to the quanti ty of energy taken 
from the hot ter body is called the efficiency of the heat engine 
and will be denoted by η . It is clear from the above that the 
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efficiency of a Carnot cycle is the maximum possible for any heat 
engine operating with given temperatures of the heat source and 
sink. It can be shown (see §65) that this efficiency is 

T7max = ( Γ 2 - Γ ι ) / Γ 2 . 

T h u s , even in the ideal Umit of completely reversible operat ion 
of a heat engine, the efficiency is less than unity: a fraction TJT2 
of the energy taken from the heat source is transferred un-
profitably to the heat sink as heat. This fraction decreases with 
increasing temperature Τ2 for given 7 i . T h e tempera ture Γ, 
is usually that of the surrounding air, and therefore cannot be 
reduced. T o decrease the fraction of energy wasted, therefore, 
the aim in applications is to operate the engine at the maximum 
possible temperature Γ2. 

T h e efficiency of an actual heat engine is always less than 
T7max because of the irreversible processes which unavoidably 
occur in it. T h e quantity ηΙη^Άχ, í-e. the ratio of the efficiency of 
the actual engine to that of an ideal engine with the same heat 
source and sink tempera tures , can be used to represent the degree 
to which the engine approaches the ideal one. This is therefore 
the ratio of the work done by the heat engine to the maximum 
work which could be obtained in the given conditions if the engine 
were operating reversibly. 

§64. The nature of irreversibility 
All thermal phenomena reduce ultimately to the mechanical 

movement of the a toms and molecules in a body. T h e irrever
sibility of thermal processes is therefore, at first sight, in conflict 
with the reversibility of all mechanical motions. This contradict ion 
is in fact only apparent . 

Suppose that a body sHdes on another body. Because of 
friction, this motion will be gradually slowed down and the 
system will finally reach a state of thermal equilibrium; the 
motion will then cease. T h e kinetic energy of the moving body 
is converted into heat in this process , i.e. kinetic energy of the 
random motion of the molecules in both bodies. This convers ion 
of energy into heat can obviously be brought about in an infinite 
number of ways: the kinetic energy of the motion of the body 
as a whole can be distributed be tween the enormous number of 
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molecules in an enormous number of ways . In other words , the 
state of equilibrium in which there is no macroscopic motion can 
occur in an immensely greater number of ways than a state in 
which a considerable quantity of energy is concentra ted in the 
form of kinetic energy of the ordered motion of the body as a 
whole. 

Thus the change from a non-equilibrium state to an equilibrium 
state is a change from a state which can occur in a small number 
of ways to one which can occur in a very much larger number of 
ways. It is clear that the most probable state of a body (or system 
of bodies) is that which can occur in the largest number of ways , 
and this will be the state of thermal equilibrium. T h u s , if a system 
left to itself (i.e. a closed system) is not in a state of equilibrium, 
then its subsequent behaviour will almost certainly be to enter a 
state which can occur in a very large number of ways , i.e. to 
approach equilibrium. 

On the other hand, when a closed system has reached a state 
of equilibrium, it is most unlikely to leave that state spontaneously. 

T h u s the irreversibility of therihal processes is probabilistic. 
T h e spontaneous passage of a body from an equilibrium state to 
a non-equilibrium state is, strictly speaking, not impossible, but 
only very much less probable than that from a non-equilibrium 
state to an equilibrium state. T h e irreversibility of thermal pro
cesses is ultimately due to the very large number of molecules of 
which bodies are composed. 

T h e improbability of a body ' s spontaneously leaving an equilib
rium state may be judged by considering the expansion of a gas 
into a vacuum. Let the gas be initially in one half of a vessel 
divided by a partition into two equal par ts . When an opening is 
made in the partition, the gas spreads uniformly through both 
parts of the vessel. T h e opposite transfer of the gas into one half 
of the vessel will never occur without external interference. T h e 
reason for this is easily seen by a simple calculation. Each 
molecule of gas, in its motion, spends on average the same time 
in each part of the vessel; we may say that the probability of 
finding it in either half of the vessel is i. If the gas may be regarded 
as ideal, its molecules move independently. T h e probability of 
finding two given molecules in the same half of the vessel at the 
same time is therefore i . i = i ; the probability of finding all 
Ν molecules of gas in one half of the vessel is 2~^. F o r instance. 
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with a relatively small quanti ty of gas, containing say 10^^ 
molecules, this probabiHty is given by the fantastically small 
number l'^^"" ~ lO"^""^^'". In other words , this occurrence would 
be observed about once in a t ime represented by the number 
10^""^^'^-whether seconds or years is immaterial , since a second, 
a year, and indeed the time the Ear th has existed, are equally 
small in comparison with this vast interval of t ime. 

A similarly small number (ΙΟ"^ !̂®""") may be shown to represent 
the probabiHty that a single erg of heat will pass from a body 
at 0°C to another body at T C . 

It is clear from these examples that the possibiHty of any 
appreciable spontaneous reversal of a thermal process is in 
essence a pure abstraction: its probabiHty is so small that the 
irreversibihty of thermal processes may in practice be regarded 
as exactly t rue. 

T h e probabiHstic nature of irreversibility appears , however , 
in the fact that in Na tu re there are nevertheless spontaneous 
deviations from equilibrium, although these are very small and 
short-Hved; they are called fluctuations. Owing to fluctuations, 
for example, the density and temperature in different small 
regions of a body in equilibrium are not exactly constant , but 
undergo some very slight variations. F o r instance, the temper
ature of 1 milligram of water in equilibrium at room tempera ture 
will vary by amounts of the order of 10"^ degree. The re are also 
phenomena in which fluctuations play an important part . 

§65. Entropy 
A quantitative characterist ic of the thermal state of a body, 

which describes the degree to which it tends to enter o ther 
s tates, is the number of microscopic ways in which the state 
can occur. This number is called the statistical weight of the 
state and will be denoted by Γ. A body left to itself will tend 
to enter a state of greater statistical weight. 

I t is cus tomary, however , to use instead of the number Γ 
itself its logarithm multipHed by Bol tzmann 's constant k. T h e 
quantity thus defined, 

S = klogef. 

is called the entropy of the body. 
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T h e number Γ of ways in which a state of a sys tem consisting 
of, for example , two bodies can occur is evidently equal to the 
product of the numbers Fj and Γ2 of ways in which the state of 
each body separately can occur: Γ = Γ1Γ2. H e n c e 

S = k loge Γ 

= k loge Γι + /: loge Γ2 

= 5i + 52. 

Thus the entropy of a composi te system is equal to the sum of 
the entropies of its parts, and it is for this reason that the logarithm 
is used in the definition of the entropy. 

T h e law which governs the direction of thermal processes may 
be formulated as a law of increase of entropy: in all thermal 
processes occurring in a closed system, the entropy of the 
system increases, and the maximum possible value of the 
entropy of a closed sys tem is reached in a state of thermal 
equihbrium. This is a more precise quanti tat ive form of the 
second law of thermodynamics . T h e law was stated by Clausius , 
and its interpretation in te rms of molecular kinetics was given 
by Boltzmann. 

Converse ly , we may say that any process in which the entropy 
of a closed system increases is irreversible; the greater the 
increase in entropy, the higher the degree of irreversibility. 
T h e ideal case of a completely reversible process corresponds 
to that in which the entropy of a closed system remains 
constant . 

A precise definition of what is meant by the " n u m b e r of 
microscopic w a y s " in which a thermal state of a body can occur 
is given in statistical physics, and only when this has been done 
is it possible to carry out an actual calculation of the ent ropy 
of various bodies and to establish the relation be tween it and 
other thermal quantit ies. 

A more detailed theoretical analysis makes it possible to 
derive a relation which is fundamental in thermodynamic 
applications of the concept of entropy. This relation is one 
be tween the change dS in the ent ropy of a body in an infinitesimal 
reversible change in state and the quanti ty of heat dQ which it 
gains in the process ; the body is, of course , assumed not closed. 
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SO that the reversibiUty of the process does not require that its 
entropy should be constant . T h e relation is 

dS = dQIT, 

where Τ is the temperature of the body. 
T h e existence of a relation be tween dS and dQ is entirely 

reasonable. When the body gains heat, the thermal motion of its 
a toms is increased, i.e. their distribution over various states of 
microscopic motion becomes more random, and so the statistical 
weight increases. It is also reasonable that the effect of a given 
quantity of heat on the thermal state of the body is described 
by the relative magnitude of this quantity of heat and the total 
internal energy of the body, and hence decreases with increasing 
temperature . 

The relation dQ = Τ dS leads, in particular, to the expression 
already given in §63 for the efficiency of a Carnot cycle. We have 
seen that this process involves three bodies : a heat source , a 
heat sink and a working medium. T h e latter is returned to its 
initial state by the cycle, and its entropy therefore also returns 
to its original value. T h e condition for the process to be rever
sible, i.e. the requirement that the total entropy of the system 
should be unchanged, therefore demands that the sum of the 
entropies Si of the heat sink and 52 of the heat source should 
be constant . Let the sink gain a small quanti ty of heat AQi in 
the cycle, and let the source lose ΔΟ2. Then 

Δ 5 ι + Δ52 = ^QJTι - ^QJT2 = 0, 

whence AQi = T1AQ2IT2. T h e work done in one cycle is A = 
ΔΟ2 — Δ β ι , and the efficiency is therefore 

ri=AlAQ2 = I-TJT2. 
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P H A S E T R A N S I T I O N S 

§66. Phases of mat ter 
T h e evaporat ion of a Hquid and the melting of a soUd are pro

cesses of the type which are called in physics phase transitions. 
The characterist ic feature of these processes is that they are 
discontinuous. F o r example, when ice is heated, its thermal 
state changes gradually until the tempera ture 0°C is reached 
and the ice suddenly begins to change into liquid water , which 
has entirely different propert ies. 

States of matter be tween which phase transit ions occur are 
called phases of matter. In this sense the aggregate s tates of 
matter (gaseous, liquid and soHd) are different phases . F o r 
example, ice, liquid water and s team are the phases of water. 
T h e concept of phases , however , is broader than that of aggregate 
s tates; we shall see that different phases can exist within a single 
aggregate state. 

It must be emphasised that, in speaking of the soHd state as a 
separate phase of matter (distinct from the Hquid phase) , we are 
considering only the crystalHne solid state. An amorphous solid 
is transformed on heating into a Hquid by a gradual softening 
without discontinuity, as already described in §52; the amorphous 
solid state is therefore not a separate phase of matter. F o r 
instance, soHd and liquid glass are not distinct phases . 

T h e transition from one phase to another always occurs at a 
fixed tempera ture (at a given pressure) . F o r example , ice begins 
to melt at 0°C (at a tmospheric pressure) and on further heating 
the temperature remains constant until all the ice is changed 
into water. During this process , ice and water coexist in contact . 

This exhibits another aspect of the tempera ture of a phase 
transition: it is the tempera ture at which there is thermal equilib
rium between the two phases . In the absence of external inter
actions (including an external heat supply) the two phases 

1 9 7 
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Liquid 

Gas 

F I G . 8 1 . 

Let us consider, as an example , a phase transition be tween a 
liquid and its vapour. T h e phase-transit ion curve (called in this 
case the evaporation curve) determines the conditions under 
which the Hquid and the vapour can coexist in equiHbrium. T h e 
curve divides the plane into two par ts , one of which corresponds 
to states of one phase and the other to states of the other phase 
(Fig. 81). Since in this case , at a given pressure , the higher 
temperatures correspond to the vapour and the lower ones to 
the Hquid, the region to the right of the curve corresponds to 
the gaseous phase , and the region to the left corresponds to the 
Hquid phase. T h e points on the curve itself correspond, as 
already mentioned, to states in which two phases coexist. 

T h e phase diagram can be drawn not only in the ρΎ plane but 
also in other coordinates: ρ and V, or Ύ and V, where V is the 
volume of a given quantity of matter. We shall take V to be the 
specific volume, i.e. the volume of unit mass of mat ter (so that 
\\V is the density of the substance) . 

Let us consider the phase diagram in the ΥΊ plane, arid a gas 
whose specific volume and tempera ture correspond to some 
point a in Fig. 82. If the gas is compressed at constant tempera-

can coexist indefinitely at this temperature . At tempera tures 
above or below the transition point, however , only one or the 
other phase can exist. F o r instance, at a tempera ture below 
0°C only ice can exist (at a tmospheric pressure) , and above 
0°C only liquid water. 

When the pressure changes, so does the phase-transit ion 
temperature . In other words , a phase transition occurs when the 
pressure and tempera ture of the substance satisfy a certain 
fixed relation. This relation may be represented graphically as 
a curve in what is called a phase diagram, whose coordinates 
are the pressure ρ and the tempera ture T. 
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ture, then the point representing the state of the gas will move to 
the left along a straight line parallel to the V axis. A t a certain 
pressure corresponding to the specific volume Vg (the point A), 
the gas begins to condense into a Hquid. A s the system is com
pressed further, the quantity of liquid increases and the quanti ty 
of gas decreases ; finally, when a certain point Β is reached the 
substance is entirely Hquid and its specific volume is F¿. 

T h e specific volumes of the gas and the liquid which are formed 
from each other (Vg and Vi) are functions of the tempera ture at 
which the transition occurs . When these two functions are 
represented by appropriate curves , we obtain a phase diagram of 
the kind shown in Fig. 82. T h e regions of the diagram to the 
right and left of the hatched area cor respond to the gaseous and 
liquid phases . T h e hatched area be tween the two curves is the 
region of separation into two phases . T h e horizontal hatching 
is significant: the points A and Β at which a horizontal Hne 
through a point C in this region meets the boundar ies of the region 
give the specific volumes of the liquid and vapour coexisting at 
that point. 

T h e different points on AB evidently cor respond to equilibrium 
of the same liquid and vapour in different relative amounts . Let 
the fractions of vapour and Hquid at some point C be χ and 1 — JC. 
T h e n the total volume of the system per unit mass is 

V = xVg-^(l-x)Vi, 

whence 

V-Vi , Vg-V 
x = r r l-x - — 
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Melting point Boiling point 
(°C) r c ) 

Helium-3 - 2 7 0 - 0 (3 ·2°Κ) 
Helium-4 — - 2 6 8 - 9 (4·2°Κ) 
Hydrogen - 2 5 9 - 2 (14°K) - 2 5 2 - 8 (20-4°Κ) 
Oxygen - 2 1 9 - 1 8 3 
Ethyl alcohol - 1 1 7 78-5 
Ethyl ether - 1 1 6 34-5 
Mercury - 38-9 356-6 
Lead 327 1750 
Aluminium 660 2330 
Sodium chloride 804 1413 
Silver 961 2193 
Copper 1083 2582 
Iron 1535 2800 
Quartz 1728 2230 
Platinum 1769 4000 
Tungsten 3380 6000 

H e h u m liquefies at a lower tempera ture than any other sub
stance existing in Na tu re ; the solidification of helium will be 
discussed in §72. Tungs ten has higher melting and boihng points 
than those of any other chemical element. 

T h e ratio of these quantities is 

X ^V-Vi^BC 
l-x Vy-V AC ' 

W e see that the quantities of vapour and hquid are inversely 
proportional to the lengths of AC and BC, i.e. the dis tances of 
C from the points A and Β which correspond to the pure vapour 
and pure liquid. This relation is called the lever rule. 

T h e phase diagram with pressure instead of tempera ture as 
ordinate is exactly similar in appearance. We see that these dia
grams do not resemble the diagrams in the pT plane. T h e region 
of separation into two phases , which in the pT diagram is only a 
line, occupies a whole area in the VT and Vp diagrams. This 
difference arises because phases in equilibrium necessarily have 
the same temperature and pressure by the general conditions of 
thermal equilibrium, but their specific volumes are different. 

Table 1 shows the melting and boiling points of a number of 
substances (at a tmospheric pressure) . 

T A B L E 1 
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§67. The Clausius-Clapeyron equation 

The transition of mat ter from one phase to another always 
involves the gain or loss of a certain quanti ty of heat called the 
latent heat or heat of transition. When a liquid becomes a gas 
this is the heat of evaporat ion; when a solid becomes a liquid, it is 
the heat of fusion. 

Since a phase transition occurs at constant pressure , the heat 
of transition from phase 1 to phase 2 is equal to the difference 
of the enthalpies Wi and W2 of the substance in the two phases 
(see §56): 

q,,= lV2-W,. 

It is clear that qi2 = —qzu i.e. if heat is absorbed in a given phase 
transition, the reverse transition is accompanied by the evolution 
of heat. 

In melting and in evaporat ion, heat is absorbed. T h e s e are 
particular cases of a general rule according to which a phase 
transition brought about by heating is always accompanied by the 
a b s o φ t i o n of heat . This rule in turn is a consequence of Le 
Chatel ier 's principle: heating tends to cause processes to occur 
which are accompanied by absorption of heat and which therefore 
as it were act against the external interaction. 

G a s \ ^ 

Liquid 

(a) (b) 

F I G . 8 3 . 

T h e same principle can be used to relate the direction of the 
phase-equilibrium curve in the pT plane to the change in volume 
in a phase transition. Let us consider, for example , an equihbrium 
system consisting of a Hquid and a vapour and suppose that it is 
compressed, so that the pressure in it increases. Then processes 
must occur in the system which reduce the volume of the sub
stance and thus counteract the effect of the compression. F o r 
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this to be so, condensat ion of the vapour must occur , since the 
conversion of vapour into Hquid is always accompanied by a 
decrease in volume. This means that , as we move upwards from 
the equiHbrium curve (Fig. 83), we must enter the region of the 
Hquid phase. In this case the Hquid is also the " low- tempera tu re" 
phase , i.e. the phase which exists at lower temperatures . T h u s it 
follows that the equilibrium curve for a liquid and a gas must 
have the form shown in Fig. 83a, and not that in Fig. 83b; the 
transition tempera ture must increase with increasing pressure . 

T h e same relation be tween transition tempera ture and pressure 
must evidently occur whenever the transition to the "high-
tempera tu re" phase is accompanied by an increase in volume. 
F o r example , since in almost all cases the volume of a subs tance 
increases on melting, the melting point usually rises with increas
ing pressure. In some substances , however , melting is accom
panied by a decrease in volume (as for instance in ice, cast iron, 
and bismuth). F o r these substances the melting point is lowered 
by increasing the pressure . 

All these qualitative results are expressed quantitatively by a 
formula which relates the slope of the phase-equiHbrium curve , 
the heat of transition, and the change in volume in the transition. 

F I G . 8 4 . 

T o derive this formula, let us imagine a very " n a r r o w " Carnot 
cycle applied to a certain quanti ty of substance, the isothermal 
processes being a transition of the substance from phase 2 to 
phase 1 at a pressure ρ and the reverse transition from phase 1 
to phase 2 at a pressure ρ 4- dp. These transit ions are represented 
in the pV phase diagram (Fig. 84) by the Hues ab and cd. T h e 
sides be and da should, strictly speaking, be taken as segments of 
adiabatics, but in the limit of an infinitely narrow cycle the 
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diíference is unimportant and does not affect the area of the cycle, 
which is the work done in the cyclic process ; this work is evidently 
jus t {V2 - Ki) dp. T h e work must also be equal to the product of 
the quantity of heat which is expended (on the isotherm cd) 
and the efficiency of the Carnot cycle. T h e quanti ty is simply 
the heat of transition from phase 1 to phase 2, and the efficiency 
is dTiT, where dT is the tempera ture difference be tween the two 
isotherms. Thus we have 

{V2-V,)dp = q,2dTlT 

or 

dp qi2 

dT T{V2-VS 

This formula, which determines the slope of the phase-
equilibrium curve p = p(T), is called the Clausius-Clapeyron 
equation. I t may also be writ ten in the form 

dT^T{V2-V,) 
dp q^2 

where the tempera ture of the transition is regarded as a function 
of pressure . In these formulae the volumes F j , V2 of the two 
phases and the heat relate to a given quanti ty of the subs tance 
(e.g. one gram or one gram-molecule). 

It should be noted that the derivative dpIdT is inversely pro
portional to the difference in volume F2 — F j . Since the change 
in volume in evaporat ion is large and that in melting is small, 
melting curves are much steeper than evaporat ion curves . F o r 
example, to lower the boihng point of water by Γ it is sufficient 
to reduce the pressure by 27 mm H g , whereas the same change in 
the melting point of ice would require the pressure to be increased 
by 130 atm. 

§68. Evaporation 
A vapour in equihbrium with its Hquid is said to be saturated, 

and its pressure is caUed the saturated vapour pressure. T h e 
Hquid-vapour equihbrium curve (Fig. 8 1 , §66) may also be 
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d logeP d_ 
dT ~ dT {RT)' 

whence 

\ogeP = constant —q I RT 

regarded as showing the relation between this pressure and the 
temperature . 

T h e saturated vapour pressure always increases with increas
ing temperature . We have seen above that this behaviour is due 
to the increase in volume of a substance on evaporat ion. This 
increase is usually very large. F o r example, the volume of water 
vapour at 100°C is 1600 times the volume of water; the boiling 
of liquid oxygen at —183°C is accompanied by a volume increase 
by a factor of about 300. 

At sufficiently low temperatures the density of the saturated 
vapour becomes so small that it behaves as an ideal gas. A simple 
formula can then be derived for the temperature dependence of 
the vapour pressure. T o do so, we use the Claus ius -Clapeyron 
equation, 

dp ^ q 
dT T{Vy-ViY 

with q the molar heat of evaporat ion, and Vg and Vi the molar 
volumes of the vapour and the liquid. Since the volume Vg is 
very large in comparison with Vi, the latter may be neglected. 
T h e volume of one gram-molecule of gas is Vg = RTlp. W e have 

dp^ pq 
dT RT^' 

or 

\ dp ^d logeP ^ q 
pdT dT RT^' 

Although the heat of evaporat ion is itself a function of tem
perature , it may often be regarded as practically constant over 
considerable ranges of tempera ture ; for example, the heat of 
evaporat ion of water decreases by only 10% between 0 and 100°C. 
T h e above formula may then be written as 
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<7fu 

Helium 80 _ 
Water 40 500 5 980 
Oxygen 6 800 442 
Ethyl alcohol 39 000 4 800 
Ethyl ether 59 000 7 500 
Mercury 28 000 2 350 

[It may be noted that from the heat of evaporat ion (far from the 
critical point; see §69) we can est imate the magnitude of the van 
der Waals forces be tween the molecules. A s has been ment ioned 
in §39, it is these forces which bring about the condensat ion of 
a substance. T h u s , on dividing <7ev by Avogadro ' s number to 
obtain the heat of evaporat ion per molecule, we derive a quanti ty 
which is a measure of the depth of the minimum on the curve of 

and finally 

ρ = ce-^iRT^ 

where c is a constant coefficient. According to this formula the 
saturated vapour pressure increases very rapidly (exponentially) 
with temperature . 

T h e origin of this exponential dependence may be unders tood 
as follows. T h e molecules in a liquid are held together by cohesion 
forces; to overcome these forces and transfer a given molecule 
from the liquid to the vapour, work must be done. W e may say 
that the potential energy of a molecule in the liquid is less than 
its potential energy in the vapour by an amount equal to the heat 
of evaporat ion per molecule. If q is the molar heat of evaporat ion, 
this diff'erence of potential energies is qiNo, where NQ is 
Avogadro ' s number. 

W e can now use Bol tzmann 's formula (§54) to show that the 
increase in the potential energy of a molecule by qiNo decreases 
the gas density by a factor ^-«/^«'^^ = ^ - « / Λ Γ ¡J^ comparison with 
the liquid. T h e pressure of the vapour is proport ional to this 
expression. 

T h e following are the values of the heats of evaporat ion and 
heats of fusion for var ious substances at a tmospheric pressure , 
in joules per mole: 
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van der Waals interaction. T h e quanti ty obtained in this way for 
heHum is about one-hundredth of an electron-volt, and for the 
other liquids in the table it is be tween one-tenth and a few tenths 
of an electron-volt.] 

In ordinary conditions there is present over the surface of a 
liquid not only its own vapour but also another gas, namely air. 
This has Httle effect on the phase equilibrium; evaporat ion 
continues until the partial pressure of the vapour becomes equal 
to the saturated vapour pressure at the tempera ture of the liquid. 

T h e presence of the a tmosphere considerably affects the 
evaporat ion process , however , which has a completely different 
form according as the saturated vapour pressure at a given tem
perature is less than or greater than the total pressure on the 
liquid. 

In the former case , the Hquid evaporates comparat ively slowly 
from its surface. It is true that the partial pressure of the vapour 
jus t above the surface almost immediately becomes equal to the 
saturated vapour pressure , but this saturated vapour penetra tes 
into the surrounding space only slowly (by diffusion), and further 
liquid evaporates only as this vapour mixes with the air. T h e rate 
of evaporat ion is, of course , increased by artificiaHy removing 
the vapour from the surface of the Hquid. 

T h e process is different when the saturated vapour pressure 
becomes equal to or slightly greater than the ambient pressure 
and the Hquid boils violently. This is shown by the intensive 
formation, on the surface of the vessel, of gas bubbles which 
grow by the evaporat ion of liquid into the bubbles and then 
become detached and rise through the Hquid, causing mixing 
of it; a s tream of vapour passes from the free surface of the liquid 
into the surrounding medium. 

F o r reasons which wiH be discussed later (see §99), the con
version of a liquid into a vapour cannot in general occur by 
spontaneous generation of vapour bubbles within a pure liquid. 
T h e centres of formation of the gas phase are tiny bubbles of 
other gases which already exist on the vessel waHs or are formed 
thereon (or on particles suspended in the liquid) from gases 
dissolved in the liquid which are expelled on heating. Until the 
boiHng point is reached (at which the saturated vapour pressure 
becomes equal to the external pressure) , the pressure of the 
surrounding Hquid prevents the growth of these bubbles. 
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By careful previous purification and degassing of the liquid and 
the vessel walls it is possible to eliminate practically all vaporisa
tion centres in it (as may also happen during the boiling process 
itself). This leads to superheating, the Hquid remaining a Hquid at 
temperatures above the boihng point. O n the other hand, in order 
to avoid superheating and to ensure that boihng occurs , various 
artificial sources of vaporisation centres are placed in the vessel 
of liquid (porous objects , pieces of glass capillary, and so on). 

A superheated Hquid (i.e. a liquid at a tempera ture at which it 
would be expected to have become a gas, at the pressure con
cerned) is an example of what are called metastable s tates . 
These are states of Hmited stabiHty. Although they can exist 
(when suitable precaut ions are taken) for a longer or shorter 
t ime, the equilibrium is relatively easily dest royed and the sub
stance enters a different state, which is stable. F o r example , a 
superheated Hquid boils instantaneously when vaporisat ion 
centres are created in it. 

Similar phenomena occur in the reverse process of condensa
tion of a vapour. H e r e again the occur rence of the phase transi
tion, in the absence of liquid in contact with the vapour , requires 
the existence of condensation centres in the vapour , usually in 
the form of small impurities, as will be further discussed in §99. 
F o r this reason supercooling or supersaturation of a vapour is 
possible, in which it is brought into a state where the pressure 
exceeds the saturated vapour pressure at the tempera ture con
cerned. Such states can be reached, for example , by cooHng a 
carefully purified saturated vapour by adiabatic expansion. 

§69. The critical point 
As the tempera ture rises, the saturated vapour pressure in

creases rapidly, and so does the densi ty of the vapour , approach
ing that of the liquid. A t a certain tempera ture the density of the 
vapour becomes equal to that of the liquid, and the vapour and 
Hquid become indistinguishable. In o ther words , the equilibrium 
curve of the liquid and gas in the pT phase diagram terminates at 
some point (Λ: in Fig. 85). This is called the critical point, and its 
coordinates are called the critical temperature and critical 
pressure Pc of the substance. 

In the VT diagram (and similarly in the Vp diagram) the 
approach to the critical point is shown by the approach to equality 
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of the specific volumes of the Hquid and vapour as the tempera
ture increases, i.e. by the approach of the two curves which form 
the boundaries of the hatched region in Fig. 82 (§66). F o r Τ = 
the two curves join, and we thus have essentially a single smooth 
curve with a maximum at Κ (Fig. 86). This is the critical point, 
its coordinates being the critical temperature Tc and the critical 
specific volume Vc. 

As the propert ies of the Hquid approach those of the gas, the 
heat of transition q be tween them decreases , and becomes zero 
at the critical point. 

F I G . 8 5 . F I G . 8 6 . 

The existence of the critical point very clearly demonst ra tes 
that there is no fundamental diiference be tween the Hquid and 
gaseous states of matter . Fo r , when considering any two states 
a and b (Fig. 86) of very different densi ty, we call the denser 
state b the Hquid state, and the less dense a the gaseous state. By 
compressing the gas a at constant temperature we can conver t it 
to the liquid b, passing through a stage of separation into two 
phases . But the passage be tween the same states a and b can also 
be carried out by first raising and then lowering the tempera ture 
while the volume is decreased, in such a way as to move along 
a path in the VT plane which passes above the critical point, as 
shown by the broken line in Fig. 86. In this case there is no 
discontinuous change of state anywhere , the substance remains 
homogeneous , and we can not say that the substance ceases at 
some point to be a gas and becomes a Hquid. 

F r o m the diagram in the VT plane we can easily find what 
happens on heating a closed vessel (for example, a sealed tube) 
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Pc (atm) Pc (g/cm^) 

Water 647-2 218-5 0-324 
Alcohol 516-6 63-1 0-28 
Ether 467-0 35-5 0-26 
Carbon dioxide 304-2 73-0 0-46 
Oxygen 154-4 49-7 0-43 
Hydrogen 33-2 12-8 0-031 
Helium-4 5-25 2-26 0-069 
Helium-3 3-33 1-15 0-041 

It has already been mentioned in §52 that solid (crystalline) 
substances differ fundamentally from liquids and gases in being 
anisotropic. T h e transition be tween a liquid and a crystal there
fore cannot be made in a cont inuous manner as can that be tween 
a Hquid and a gas. W e can always say to which of the two phases 
(crystal or liquid) a body belongs, according to whether it does 
or does not have the qualitative proper ty of anisotropy. T h u s 
there cannot exist a critical point for melting. 

containing a certain quantity of liquid and the vapour above it. 
Since the total volume of the substance is constant , this will 
correspond to movement upward along a vertical line in the VT 
plane. If the volume of the tube exceeds the critical volume 
corresponding to the given quanti ty of substance, this hne will 
lie to the right of the critical point {AB in Fig. 86) and as heating 
proceeds the quantity of liquid will decrease until the whole of 
the substance is converted into vapour (at B); the boundary 
(meniscus) be tween the Hquid and the vapour will d isappear at 
the lower end of the tube. If the volume of the tube is less than 
the critical volume (point A'), vapour wiH condense on heating 
until the whole of the substance becomes liquid (at B'); the 
meniscus will disappear at the top of the tube. FinaHy, if the 
volume of the tube is equal to the critical volume, the meniscus 
will disappear somewhere within the tube at the critical 
tempera ture Tc. 

T h e values of the absolute critical tempera tures T^ pressures 
Pc and densities pc for a number of substances are shown in 
Table 2. 

T A B L E 2 
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§70. Van der Waals ' equation 
As the density of a gas increases, its propert ies deviate more 

and more from those of an ideal gas, and it ñnally condenses to 
a hquid. These phenomena depend on complex molecular inter
actions, and there is no v^ay of giving a quanti tat ive description 
of these in order to derive theoretically an exact equat ion of 
state for the substance. W e can, however , construct an equat ion 
of state which takes account of the main qualitative propert ies 
of molecular interaction. 

T h e nature of the interaction be tween molecules has already 
been described in §39. T h e repulsive forces which rapidly in
crease at short distances signify, roughly speaking, that the mole
cules occupy a certain definite volume, and the gas cannot be 
compressed beyond this. Ano the r fundamental proper ty of the 
interaction is that there is at traction at large dis tances; this 
attraction is very important , since it is responsible for the 
condensat ion of a gas into a hquid. 

First of all, let us take into account , in the equation of state 
(which will be writ ten for one mole of substance) , the hmited 
compressibihty of the gas. T o do so, we must replace the volume 
V in the ideal-gas equation ρ = RTIV by V—b, where b is some 
positive constant which takes into account the size of the 
molecules. T h e equation 

ρ =RTI(V-b) 

shows that the volume cannot be made less than ¿?, since for this 
value of V the pressure becomes infinite. 

Let us now take into account the at traction be tween molecules. 
This attraction must cause a decrease in the gas pressure , since 
each molecule near the waU of the vessel is subject to a force 
towards the interior of the vessel exerted by the other molecules. 
As a rough approximation, this force on each molecule may be 
taken as proportional to the number of molecules per unit volume, 
i.e. to the density of the gas. T h e pressure itself is also propor
tional to this number . T h u s the total decrease in pressure due to 
the attraction be tween molecules is proportional to the square 
of the gas density, i.e. inversely proportional to the square of its 
volume. Accordingly we subtract from the above expression 
for the pressure a term alV\ where a is another constant rep-
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resenting the forces of molecular at traction. T h u s we have the 
equation 

RT a 
P = V-b 

or 

(p + y^{V-b) = RT. 

This is van der Waals' equation. When the gas densi ty is low, 
i.e. the volume V is large, a and b may be neglected, and we 
return to the equation of state of an ideal gas. W e shall see below 
that the same equation correctly descr ibes the phenomena which 
occur in the opposite Umiting case of high compress ion. 

T o examine the behaviour of a gas described by van der 
Waals ' equation, let us consider the isotherms defined by this 
equation, i.e. the curves of ρ as a function of V for given values 
of T. F o r this purpose we write the equat ion in the form 

\ Ρ / Ρ Ρ 

F o r given values of ρ and Τ this is a cubic equation in V. 
A cubic equation has three roots , of which either all three or 

one may be real; in the latter case the equation also has two 
complex conjugate roots . T h e volume can, of course , be rep
resented as a physical quanti ty only by real (and positive) 
roots . In the present case the equation cannot have negative 
roots (if ρ is positive), since if V is negative every term in the 
equation is negative and their sum cannot be zero. T h u s we see 
that according to van der Waals ' equat ion there are either three 
different values or one value of the volume corresponding to 
given values of the tempera ture and pressure . 

T h e second case always occurs at sufficiently high tempera
tures. T h e corresponding isotherms differ from those of an ideal 
gas only by some change in shape , but remain monotonical ly 
decreasing (curves 1 and 2 in Fig. 87 ; increasing numbers on the 
curves correspond to decreasing temperatures) . A t lower 
temperatures the isotherms have a maximum and a minimum 
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(curves 4, 5, 6), and so for each of them there is a range of 
pressures in which the curve gives three values of V ( three 
points of intersection of the isotherm with a horizontal line). 

Figure 88 shows one such isotherm. Let us see what is the 
significance of its various parts . On the sections ge and ca 
the dependence of pressure on volume is of the normal type: 
the pressure increases as the volume decreases . T h e section 
ec would correspond to the unnatural situation where com
pression of the substance would decrease the pressure . It is 

F I G . 8 7 . 

easily seen that such states cannot exist in Na tu re . F o r let us 
imagine a substance with these propert ies , and suppose that a 
small region of it happens to contract , e.g. owing to the fluctua
tions described in §64. T h e n its pressure will decrease also, i.e. 
become less than the pressure of the surrounding medium, which 
in turn causes a further contract ion, and so on, i.e. this small 
region will contract at an increasing rate. T h u s these states of 
mat ter would be completely unstable and therefore could not 
occur in reality. 

T h e existence of the unrealisable section ec of the isotherm 
signifies that, as the volume graduaUy varies, the substance 
cannot remain homogeneous at all t imes: at some point there 
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must be a discontinuous change of state and the substance must 
separate into two phases . In o ther words , the t rue isotherm is 
given by the curve abfg. T h e part ab cor responds to the gaseous 
state of the substance, and fg to the Hquid state. T h e straight 
horizontal section bf cor responds to two-phase states where the 
gas becomes a Hquid; this occurs at a certain constant pressure 
(for a given temperature) . [I t can be shown that the section bf 
must be situated so that the areas bed and def are equal.] 

F I G . 8 8 . 

T h e sections be and ef of the isotherm correspond to meta-
stable states of supercooled vapour and superheated Hquid 
(§68). We now see that there are Hmits (represented by the 
points c and e) beyond which the vapour cannot be supercooled 
or the Hquid superheated. 

As the tempera ture r ises, the straight section of the isotherm 
becomes shorter , and at the critical tempera ture it contracts to 
a point {K in Fig. 87). T h e isotherm 3 which passes through 
this point separates isotherms of two types : the mono tonic 
isotherms (1,2) and the isotherms with minima and maxima 
(4,5,6), on which the substance must necessari ly separate into 
two phases . 

If the beginning and end of the straight section of each iso
therm are joined by a curve {a in Fig. 87), this gives the curve 
of phase equilibrium of liquid and vapour in the pV diagram. 
T h e maximum Κ on this curve is the critical point. O n joining 
the points which correspond to c and e in Fig. 88 we obtain a 
curve (b in Fig. 87) which is the boundary of the region within 
which the substance cannot exist without separat ion into two 
phases , even in a metastable state. 
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At the critical point the three points at which the straight 
section intersects the van der Waals isotherm merge into one . 
H e n c e it follows that the tangent to the isotherm at the critical 
point is horizontal , i.e. the derivative of the pressure with 
respect to the volume (at constant temperature) is zero: {άρΙάν)τ 
= 0. T h e reciprocal of this quanti ty is the compressibil i ty of 
the substance, which is therefore infinite at the critical point. 

T h e section of the isotherm which corresponds to a super
heated liquid may he partly below the axis of abscissae (as on 
the isotherm 6 in Fig. 87). This section corresponds to metas table 
states of an " e x p a n d e d " hquid, as discussed at the end of §51 . 

§71. The law of corresponding states 
T h e critical values of the volume, tempera ture and pressure 

can be related to the parameters a and b in van der Waals ' 
equation. T o do so, we note that for Τ =Τ^ and p = Pc all three 
roots of van der Waals ' equation 

\ Pc / Pc Pc 

are the same and equal to the critical volume V^. This equation 
must therefore be identical with 

( K - V,f = 1 / 3 _ 3 | / 2 j / ^ ^ W V J " - V/ = 0. 

A comparison of coeflficients of powers of V in the two equat ions 
gives the three relations 

b - , ^ = 3 K , ^=3K^ ^=V^ 
Pc Pc Pc 

These relations, regarded as equat ions for the unknowns K^, Pc 
and Tc, are easily solved to give 

Vc = 3b, p, = alTlb\ Tc = Sal27bR. 

By means of these relations we can carry out the following 
interesting transformation of van der Waals ' equation. In this 
equation we write, instead of the variables p, T, V, their ratios 
to the critical values: 
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P^=PIPC, T^ = TITC, K * = K / F , ; 

these ratios are called the reduced p ressure , t empera ture and 
volume. By means of simple t ransformations we can easily see 
that van der Waals ' equation then becomes 

( ρ * + - ρ ^ ) ( 3 1 ^ * - 1 ) = 8 Γ * . 

T h e precise form of this equat ion is not of part icular interest ; 
the remarkable thing is that it does not involve the constants 
a and b which depend on the nature of the gas. In o ther words , 
if the critical values are used as the units of measurement of 
the volume, pressure and tempera ture , the equat ion of state 
becomes the same for all subs tances . This is called the law of 
corresponding states. 

If this law appHes to the equat ion of s ta te , it will apply also to 
all phenomena which are in any way related to the equat ion of 
s tate, including the gas-liquid phase transit ion. F o r example , 
the tempera ture dependence of the saturated vapour pressure , 
if writ ten as a relation be tween reduced quantit ies pipc =f{TlTc), 
must be a universal relation. 

A similar conclusion may be d rawn concerning the heat of 
evaporat ion q. H e r e we must consider the dimensionless ratio 
of the heat of evaporat ion to some other quanti ty of the same 
dimensions (energy/mole); this may be taken as RTc. According 
to the law of corresponding states , the ratio qlRTc must be the 
same for all substances as a function of the reduced tempera ture : 
qlRTc = F{TITc). F o r tempera tures much below the critical 
tempera ture this function tends to a cons tant Umit, whose 
experimental value is about 10. 

It should be emphasised that the law of corresponding states 
is only approximate , but it can be used to derive results which are 
entirely suitable for rough est imations. 

Although the law of corresponding states has been derived from 
van der Waals ' equation, it is in fact somewhat more accura te 
than the latter, since it does not depend on the specific form of 
the equation of s tate , but follows simply from the fact that this 
equation involves only two constants a and b. A different equat ion 
of state with two parameters would likewise lead to the law of 
corresponding states. 
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§72. The triple point 
A s we know, equiUbrium be tween two phases is possible only 

when a certain relation holds be tween the tempera ture and the 
pressure , represented by a certain curve in the pT plane. I t is 
evident that three phases of the same substance cannot be 
simultaneously in equiUbrium with one another along a Une; such 
an equilibrium is possible only at a particular point in the pT 
diagram, i.e. at a part icular pressure and a part icular tempera ture . 
This is the point at which the equilibrium curves of each pair of 
the three phases intersect. Points of equiUbrium of three phases 
are cahed triple points. F o r example , for water the s imuhaneous 
existence of ice, s team and Uquid water is possible only at 
4-62 mm H g pressure and -hO-OrC t empera ture . 

Since even three phases are in equiUbrium only at one point , 
four or more phases cannot exist simultaneously in equilibrium 
with one another. 

T h e fact that triple points correspond to definite values of the 
temperature makes them especially suitable as fixed points of 
the temperature scale. Their reproduct ion is free from the 
difficulties associated with the need to maintain a given pressure , 
as is required, for example , when the melting point of ice at 
a tmospheric pressure (or any point of equiUbrium of two phases) 
is taken as a fixed point. T h e precise definition now used for the 
absolute degree is based on such a choice: the tempera ture of 
the triple point of water is taken to be exactly 273·16°Κ. I t 
should be mentioned, however , that with the present accuracy 
in the measurement of tempera ture and pressure this definition 
is indistinguishable from that in which the melting point of ice 
is taken as273-15°K. 

F I G . 8 9 . 
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25 at 

Figure 89 shows the form of the phase diagram for a substance 
having only three phases : solid, Hquid and gaseous. In the 
diagram, the regions marked s, I and g cor respond to these 
phases , and the lines separating the regions are the curves of 
equilibrium of the corresponding pairs of phases . T h e direction 
of the melting curve is chosen so as to correspond to the usual 
case where a body expands on melting (see §67). F o r the few 
instances where melting is accompanied by contract ion of the 
substance, the curve slopes in the opposi te direction. 

It is seen from the phase diagram that a substance does not 
necessarily pass through a liquid state in the course of becoming 
a gas. At pressures below the triple point, heating the solid 
converts it directly into vapour; this phase transition is caHed 
sublimation. F o r example, solid carbon dioxide sublimes at 
a tmospheric pressure , since its triple point corresponds to a 
pressure of 5· 1 atm (and a tempera ture of —56-6°C). 

T h e curve of equilibrium of a liquid and a gas terminates at the 
critical point {K in Fig. 89). F o r transit ions be tween liquid and 
solid phases there can be no critical point (as already ment ioned 
in §69). T h e melting curve therefore cannot simply terminate , 
and must continue indefinitely. 

T h e curve of equilibrium of a solid and a gas passes through 
the origin, i.e. at absolute zero tempera ture a substance is in the 
solid state at any pressure . This is a necessary consequence of 
the ordinary concept of tempera ture based on classical mechanics. 
According to this concept , the kinetic energy of the a toms is 
zero at absolute zero tempera ture , i.e. all the a toms are at rest. 
T h e equilibrium state of a body is then one in which the configur
ation of the a toms corresponds to the minimum energy of 
interaction between the a toms. This configuration, whose 
propert ies differ from all o thers , must have some degree of order-
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ing, i.e., must represent a spatial lattice. This means that the 
substance must be crystalhne at absolute zero. 

The re exists in N a t u r e , however , one except ion to this rule: 
helium, after becoming liquid, remains liquid at all t empera tures 
down to absolute zero. T h e phase diagram of the isotope hehum-4 
is shown in Fig. 90 ; the broken line in this diagram will be 
explained in §74. We see that the evaporat ion and melting curves 
nowhere intersect, i.e. there is no triple point. T h e melting curve 
meets the ordinate axis at /? = 25 a tm; this means that , in order 
to solidify helium, it must be not only cooled but at the same 
time subjected to a pressure of at least 25 atm. 

It is clear from the above that this behaviour of heUum is 
inexphcable on the basis of classical ideas; it is in fact due to 
quantum effects. As already mentioned in §50, according to 
quantum mechanics the motion of the a toms does not cease 
entirely even at absolute zero . F o r this reason the above con
clusion that a substance must solidify at this tempera ture is 
also incorrect . T h e quantum propert ies of a substance appear 
more markedly at low tempera tures , where they are not masked 
by the thermal motion of the a toms. All substances except 
helium sohdify before their quantum propert ies become suffi
ciently important ; only helium becomes a " q u a n t u m hqu id" 
which need not sohdify. Other remarkable propert ies of this 
liquid will be discussed in § 124. 

§73. Crystal modifications 
T h e region of the solid state is not usually occupied by a 

single phase. A t different pressures and tempera tures a subs tance 
may be in different crystal s tates , each with a definite s t ructure . 
These different states are also different phases of the substance , 
and are called crystal modifications; the property of having more 
than one such modification is very common, and is called poly
morphism of the substance (or, for the e lements , allotropy). Well-
known examples are the modifications of carbon (graphite and 
diamond), sulphur (which forms or thorhombic and monoclinic 
crystals), and silica (the various minerals quartz , t r idymite, cris-
tobalite). 

Like any other phases , different modifications can be in equilib
rium with one another only along certain fines in the pT diagram; 
the transition from one modification to another (called a poly-

Pure Mathematical Physics



§73] CRYSTAL MODIFICATIONS 219 

morphic transformation) is accompanied by absorpt ion or 
evolution of heat. F o r example , the transformation of what is 
called a iron (with a body-centred cubic lattice) into γ iron (with 
a face-centred cubic lattice) occurs at 910°C at a tmospher ic 
pressure , and is accompanied by the a b s o φ t i o n of about 1600 
J/mole of heat. 

Figure 91 shows, as an example , the general form of the phase 
diagram for sulphur. T h e letters R and Μ denote the regions 
where the two soUd phases are stable: rhombic (ordinary yellow 
sulphur) and monocHnic. W e see that here there are three triple 
points. 

Liquid 

F I G . 9 1 . 

Figure 92 shows the phase diagram of water . T h e five crystal 
modifications of ice are shown in the diagram by the numbers 
I, I I , I I I , V , V I . Ordinary ice cor responds to region I ; the o ther 
modifications are formed only under pressures of thousands of 
a tmospheres . T h e vapour region cor responds to such low 
pressures that it is almost impossible to show it in the same 
diagram. 

- 4 0 - 2 0 0 20 

T, X 

F I G . 9 2 . 
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A typical feature of phase transit ions be tween different crystal 
modifications is the ease with which metastable states can occur . 
Supercoohng of a vapour or superheating of a liquid is possible 
only when the necessary precaut ions are taken, but the delay 
of phase transitions in the solid state and existence of crystal 
modifications in conditions where they are " n o t permi t ted" are 
almost the rule. This is quite unders tandable , since the c loseness 
of a toms in a crystal and the restriction of their thermal motion 
to small oscillations greatly hamper the rearrangement of the 
lattice into a different modification. A n increase in tempera ture 
makes the thermal motion more violent and thus accelerates this 
rearrangement . 

H e r e it should be remembered that the polycrystalhne s tructure 
of a soUd is itself in a sense metastable (in comparison with the 
single-crystal state). T h u s , when a body composed of small 
crystals is heated, its component crystals become larger, some 
crystals growing at the expense of o thers ; this is called recrystal-
lisation. T h e amorphous state of a body may also be metas table ; 
for example, spontaneous crystallisation is the reason for the 
cloudiness of very old glass. 

A p o l y m o φ h i c transformation is facilitated by the presence 
in the former phase of inclusions of the new phase , which act 
as "nuc le i " . A well-known example of this is the transformation 
of ordinary white tin (which has a tetragonal structure) into a 
powder of grey tin (a modification which has a cubic lattice). A t 
a tmospheric pressure these modifications are in equilibrium at 
18°C, white tin being stable above this tempera ture and grey 
tin below. In pract ice, however , white tin can exist even below 
freezing point, but when a few grains of the grey modification 
are added it crumbles to a grey powder . 

T h e difficulty of lattice rearrangement at low tempera tures may 
bring about the existence of modifications which are not stable 
phases under any condit ions; such modifications do not appear 
at all in the phase diagram, which represents stable states of a 
substance. This is observed, for example , in the hardening of 
steel. T h e solid solution of carbon in γ iron, called austeni te , 
is stable only at temperatures 700-900°C (depending on the 
carbon content) , and must decompose at lower tempera tures . 
When austenite is very rapidly cooled or quenched, however , 
there occurs instead a formation in the metal of needle-shaped 
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crystals of a new phase , a soHd solution with a tetragonal lattice 
called martensi te , which is extremely hard. This " in t e rmed ia t e " 
phase is always metastable , and decomposes when steel is slowly 
heated or tempered at 250-300° . 

Figure 93 shows the phase diagram of carbon; the region of 
the gaseous state is at low pressures and is not visible on the 
scale used in this diagram. T h e phase diagram shows that at 
ordinary pressures and tempera tures the stable modification is 
graphite. But under ordinary condit ions graphite and diamond 
both exist as almost completely stable crystals . This is due to 

Liquid 

2 0 0 0 
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the large difference in the s t ructures of the two crystals , which 
requires a very extensive rear rangement to conver t one into 
the other (as is indicated by the fact that the density of diamond 
is 1-5 t imes that of graphite). O n heating to high tempera tures , 
however , diamond is transformed into graphite: above 1700°K 
it rapidly crumbles into graphite powder (if heated in a vacuum 
to prevent combust ion) . T h e diagram shows that the reverse 
process of convers ion of graphite into diamond can occur only 
at very high pressures . T h e region in which diamond is stable 
hes above about 10 000 atm. A high tempera ture is also necessary 
if the process is to occur at a reasonable rate . T h e process is 
carried out in practice at pressures of 50 000 to 100 000 a tm and 
temperatures of 1500-3000°K, and a metal catalyst must also 
be present . T h e spontaneous transformation of graphite into 
diamond has been observed at about 130 000 a tm at temperatures 
above 3300°K; this is apparently in the region where graphite 
is neither stable nor metastable , but completely unstable . 
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§74. Phase transitions of the second kind 
It has already been mentioned that the transition be tween 

phases of different symmetry cannot occur in crystals in a con
t inuous manner as it can in a liquid and a gas. In every state the 
body has one symmetry or the other , and therefore we can 
always assign it to one of the two phases . 

T h e transition be tween different crystal modifications is usually 
effected by means of a phase transition in which there is a sudden 
rearrangement of the crystal lattice and the state of the body 
changes discontinuously. A s well as such discontinuous tran
sitions, however , another type of transition involving a change 
of symmetry is also possible. 

Actual examples of such transitions are somewhat complicated 
as regards the details of the crystal s t ructure of the bodies. T o 
illustrate the nature of these transit ions, we shall therefore 
consider an imaginary example. Let us suppose that a body 
crystaUises at low temperatures in the tetragonal system, i.e. 
has a lattice consisting of cells which are rectangular paral
lelepipeds with square bases and a height c greater than the side 
a of the base. Let the difference be tween a and c be small, i.e. 
the crystal be tetragonal but almost cubic; and let us assume 
that during thermal expansion the a edges increase in length more 
rapidly than the height c. Then , as the tempera ture increases , 
the lengths of the sides of the unit parallelepiped will become 
more nearly equal and at a certain tempera ture they will be the 
same; on further heating, all three sides will increase in length 
at the same rate , remaining equal. It is clear that , as soon as 
a becomes equal to c, the symmetry of the lattice suddenly 
changes from tetragonal to cubic, and we have essentially a 
different modification of the substance. 

This example is typical in that there is no discontinuous change 
in state of the body. T h e configuration of the a toms in the crystal 
changes continuously. Howeve r , an arbitrarily small displace
ment of the a toms from their symmetrical position in the lattice 
of the cubic modification (when the tempera ture falls again) is 
sufficient to cause a sudden change in the symmetry of the lattice. 
So long as all three sides of the cell are equal the lattice is cubic , 
but the appearance of even an infinitesimal difference be tween 
the lengths a and c makes the lattice tetragonal. 

A transition between crystal modifications which occurs in 
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this way is caUed a phase transition of the second kind, in contras t 
to ordinary phase transit ions, which in this case are said to be of 
the first kind. + 

Thus a phase transition of the second kind is cont inuous in 
the sense that the state of the body changes continuously. It 
should be emphasised, however , that the symmetry at the tran
sition point does , of course , change discontinuously, so that 
we can always assign the body to one of the two phases . But, 
whereas at a phase transition point of the first kind bodies in two 
different states are in equilibrium, at a transit ion point of the 
second kind the states of the two phases are the same. 

T h e absence of a discontinuity of state in a phase transition 
of the second kind means that there is no discontinuity in quantit ies 
which describe the thermal state of a body: volume, internal 
energy, enthalpy, etc . H e n c e , in particular, such a transit ion is 
not accompanied by evolution or absorpt ion of heat . 

Never the less , at a transition point there is a discont inuous 
change in the dependence of these quantit ies on tempera ture . 
Fo r instance, in the example considered it is evident that the 
thermal expansion of the crystal will occur differently according 
as there is only a change in the volume of the lattice (when the 
crystal has cubic symmetry) or the heating also brings about a 
change in cell shape as a result of unequal changes in the height 
and base edge of the cells, as when there is tetragonal symmetry . 
It is also evident that different quanti t ies of heat will be necessary 
for the same tempera ture increase. 

This means that at a transition point of the second kind there is 
a discontinuity in the tempera ture derivat ives of the thermal 
propert ies of the body, i.e. in the coefficient of thermal expansion 
{dVldT)p, the specific heat Q = {dWIdT)^, e tc . 

T h e presence of these discontinuities is the main characterist ic 
of transit ions of the second kind which appears in thermal 
measurements . Figure 94 shows the typical manner of variation 
of specific heat with tempera ture near a transition point of this 

t The example described above is not entirely imaginary. A change of this 
type occurs in the lattice of barium titanate (BaTiOg). At room temperature 
this lattice is tetragonal, with values of a and c which differ by 1%. When the 
temperature increases, the length a increases and c decreases. At 120°C the 
substance changes to the cubic modification, but in this actual case the values of 
a and c do in fact have a slight discontinuity at the transition point, so that the 
transition is of the first kind. 
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F I G . 94. 

This is a limitation (in reality not the only one) on the possible 
existence of a phase transit ion of the second kind. F o r example , 
no such transition can occur be tween crystals of the cubic and 
hexagonal sys tems: neither of these symmetr ies can be said to 
be higher than the other , since the former contains axes of order 
4 which do not occur in the latter, but it does not , on the other 
hand, contain the axis of order 6. 

I t can also be shown that a transition of the second kind cannot 
occur be tween a crystal and a Hquid. 

T h e direction in which the specific heat changes discontinuously 
at a transition of the second kind is related to the way in which 
the symmetry changes: the specific heat is smaller in the phase 
of higher symmetry. In most cases the high-temperature phase 
has the higher symmetry , and the discontinuity of the specific 
heat is then as shown in Fig. 9 4 . This sequence of the phases 
with respect to tempera ture is not necessary , however . F o r 
example , Rochelle salt ( N a K ( C 4 H 4 0 6 ) . 4 H 2 0 ) has two transit ion 

kind: a gradual increase is interrupted by a sudden drop , after 
which the specific heat again begins to rise. 

In a transition of the second kind, the pressure derivatives of 
thermal quantities are also discontinuous. Fo r example , the 
compressibiHty (Í/F/Í//?)?^ has a discontinuity. 

Let us return to the imaginary example used above. T h e follow
ing property of the change in symmetry in the transition may be 
noted: the lattice of the cubic modification has all the symmetry 
of the elements of the tetragonal modification and some other 
elements as well. In this sense we can say that the transition takes 
place between two phases of which one has higher symmetry 
than the other. This is in fact a general property and applies to 
all phase transitions of the second kind. 
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points of the second kind (at - 1 8 and - 2 3 ° C ) , be tween which 
its crystals belong to the monochnic system; at tempera tures 
outside this range the salt forms or thorhombic crystals . It is 
clear that the passage through the upper point in the direction 
of increasing tempera ture is accompanied by an increase of 
symmetry, but the passage through the lower point involves a 
corresponding decrease of symmetry . 

It has already been mentioned that ordinary phase transit ions 
frequently exhibit phenomena of superheat ing or supercoohng, 
in which one phase continues to exist (as a metastable phase) 
under conditions where the other phase is stable. T h e nature 
of these phenomena depends on the necessi ty for " c e n t r e s " on 
which the new phase can grow. In transit ions of the second kind, 
such phenomena are obviously impossible, since one phase 
changes into the other instantaneously and continuously. This 
is very clearly seen in the example considered above , where 
the transition amounted essentially to a change in the configuration 
of the a toms in thermal expansion. 

Phase transitions of the second kind are not always transit ions 
be tween different crystal modifications, but they always bring 
about some new quahtat ive proper ty of a body , with a cont inuous 
change of state. This may be a new symmetry proper ty (related 
to the magnetic propert ies of the substance) , or it may be the 
occurrence of what is called superconduct ivi ty, the disappearance 
of electrical resistance. 

Finally, there is a very unusual phase transit ion of the second 
kind in hquid hehum at about 2·2°Κ. In this transition the hquid 
remains a liquid but acquires fundamentally new propert ies 
(see §124). T h e broken hne in the helium phase diagram (Fig. 
90, §72) divides the regions of exis tence of the two phases , 
which are known as hehum I and helium I I . 

§75. Order ing of crystals 
All the crystal s t ructures discussed in §47 have the proper ty 

that the a toms of each kind are situated at entirely definite 
positions and, conversely, at each lattice point there must be 
an atom of a particular kind. T h e number of a toms of each kind is 
equal to the number of places for them in the lattice. 

The re are also s tructures which do not have this proper ty , 
however ; for example , that of sodium nitrate (NaNOg). W e shall 
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At sufficiently low tempera tures , the oxygen a toms take up 
quite definite posi t ions; in pract ice , what happens is that in each 
layer all the NO3 groups have the same orientation, and layers 
with orientation a al ternate with those having orientation b. 
Such a crystal is said to be completely ordered. 

When the temperature is raised, however , the ordered arrange
ment of the a toms is disturbed: as well as NO3 groups occupying 
the usual (their " o w n " ) position, there appear groups with the 
" o t h e r " orientation. 

As the degree of ordering decreases , i.e. as the fraction of 
" incorrect ly" oriented NO3 groups increases, a point is finally 
reached, at a temperature of 275°C, where the " o w n " and " o t h e r " 
orientations are entirely mixed: each NO3 group has an equal 
probability of occupying either position. T h e crystal is then said 
to be disordered. All the NO3 layers become crystallographically 
equivalent, i.e. there is a change, namely an increase, in the 
symmetry of the crystal. 

Phenomena of crystal ordering occur very widely in alloys. 
F o r example , crystals of brass (the alloy CuZn) at low tempera
tures have a cubic lattice with the copper a toms at the vert ices 
and the zinc a toms at the centres of the cubic cells (Fig. 96a). 
This s tructure corresponds to a completely ordered crystal . 

not describe this in detail, but simply mention that in this crystal 
the NO3 groups form layers in which the nitrogen a toms are at 
the vertices of equilateral triangles and the oxygen a toms surround 
the nitrogen atoms in position a or b (Fig. 95). T h e possibility 
of these two orientations of the NO3 groups implies that the 
number of positions which can be occupied by oxygen a toms is 
twice the number of these a toms. 
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T h e copper and zinc a toms may change places , however ; in 
this sense we may say that in this crystal also the number of 
places available to atoms of each kind is twice the number of 
those a toms. As the tempera ture increases , the number of "in
correct ly" placed a toms becomes larger, and complete disorder 
exists at 450°C: at each lattice point a copper a tom or a zinc a tom 
can occur with equal probabihty, so that all the lattice points 
become equivalent (Fig. 96b). At this stage the symmetry of the 
crystal obviously changes: its Bravais lattice becomes body-
centred cubic instead of simple cubic. 

(a) xZn oCu 

F I G . 9 6 . 

(b) 

In both the examples described above , the transition to the 
disordered state occurs by a phase transit ion of the second kind. 
T h e degree of ordering decreases continuously and becomes zero 
at a certain tempera ture , which is the transit ion point. 

This type of transition to the disordered state is not a general 
rule, however ; the change can also occur by an ordinary dis
cont inuous phase transition. In such cases the ordered con
figuration of the a toms in the crystal is des t royed at first only to 
a comparatively small extent as the tempera ture increases , and 
at a certain tempera ture the crystal suddenly enters the dis
ordered state, in which the a toms are completely intermingled. 
Such a transition occurs , for example , at 390°C in the alloy 
CugAu. In its disordered phase the copper and gold a toms are 
randomly located at all the points of a face-centred cubic latt ice; 
in the ordered crystal the gold a toms occupy posit ions at the 
vertices of the cubic cells, and the copper a toms at the centres 
of the faces. 

§76. Liquid crystals 
In addition to the anisotropic crystalline and isotropic liquid 

states, a substance may also exist in a peculiar state called a 
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liquid crystal. In its mechanical propert ies , a substance in this 
state resembles an ordinary liquid, being fluid; liquid crystals 
include substances both of high mobility (low viscosity) and of 
low mobility (high viscosity). These liquids nevertheless differ 
from ordinary liquids in being anisotropic; this is most noticeable 
in their optical propert ies. 

T h e liquid-crystal state is observed in many complex organic 
substances having large molecules, usually of elongated form. 
It is not uncommon; about one complex organic substance out 
of every two hundred forms liquid crystals. 

T h e physical nature of the liquid-crystal state appears to be 
as follows. In an ordinary liquid the relative position and orienta
tion of the molecules are completely random; in other words , 
the molecules of a liquid in their thermal motion undergo both 
random translational movements and random rotations. In a 
liquid crystal , however , although the molecules are randomly 
situated in space, their mutual orientation is not random. In 
other words , only the translational thermal motion of the mole
cules is random, and not their rotation. T h e simplest example of 
such a structure can be imagined as a liquid consisting of rod-
shaped molecules, which can move in any manner relative to 
one another provided that they remain parallel. Since there is 
no obstacle to the translational motion of the molecules, the 
substance is fluid, i.e. behaves as a liquid, but the ordered 
arrangement of the molecules has the result that the substance 
is anisotropic. F o r instance, it is clear that the propert ies of the 
substance in the direction parallel to the rod-shaped molecules 
will be entirely different from its propert ies in other directions. 

A substance in the liquid-crystal state is not usually a "single 
crys ta l" , but forms a"po lycrys ta l l ine" mass consisting of a large 
number of droplet-Uke liquid crystallites oriented variously 
with respect to one another. F o r this reason, a substance which 
is a liquid crystal usually has the appearance of a turbid liquid: 
this occurs because of the random scattering of light at the 
boundaries between droplets. By means of a strong electric or 
magnetic held it is possible in some cases to give all the droplets 
the same orientation, and an almost clear liquid "single c rys ta l" 
is obtained. 

If a liquid crystal is placed in a liquid with which it does not 
mix, the individual liquid-crystal drops take a form which is 
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sometimes spherical, sometimes ellipsoidal, and in a few cases 
even that of strange polyhedra with much rounded edges and 
corners . 

Substances which exist in the liquid-crystal state also possess 
ordinary sohd-crystal and isotropic hquid phases . T h e sequence 
of formation of these phases is as follows. A t low tempera tures 
the substance is a sohd crystal , at higher tempera tures it enters 
the liquid-crystal state, and at still higher tempera tures it becomes 
an ordinary liquid. Many substances form not only one but two or 
more different liquid-crystal modifications. Like all phase 
transit ions, the transformations of liquid-crystal phases into 
one another or into other phases occur at precisely defined 
temperatures and are accompanied by the evolution or absorpt ion 
of heat. 
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S O L U T I O N S 

§77. Solubility 
Solutions are mixtures of two or more substances in which the 

substances are mixed on the molecular scale. T h e relative amounts 
of the various substances in the mixture may vary over a more 
or less wide range. If one substance is present in greater quantity 
than the o thers , it is called the solvent, and the other substances 
are called solutes. 

T h e composit ion of a solution is described by its concentration, 
which gives the relation be tween the quantities of the substances 
in the mixture —the components of the mixture, as they are called. 
T h e concentrat ion can be defined in various ways. Physically, 
the most informative is the molar concentrat ion, i.e. the ratio 
of the numbers of molecules (or, what is the same thing, the 
ratio of the quantities expressed in moles). Alternatively, we may 
use concentrat ions by weight, by volume (the volume of substance 
dissolved in a given volume of solvent), and so on. 

T h e process of dissolution is accompanied by the evolution or 
absorption of heat. T h e quanti ty of heat depends not only on the 
quanti ty of solute but also on the quanti ty of solvent. 

T h e heat of solution is usually defined as the quanti ty of heat 
evolved or absorbed in the dissolution of one gram-molecule of 
substance in a quanti ty of solvent so large that any further dilution 
would cause no thermal effect. F o r example, the heat of solution 
of sulphuric acid (H2SO4) in water is + 7 5 000 J (the plus sign 
denoting that heat is evolved); the heat of solution of ammonium 
chloride (NH4CI) is —16 500 J (the minus sign shows that heat 
is absorbed). 

T h e mutual solubility of two substances usually has definite 
limits: no more than a certain amount of solute can dissolve in 
a given quantity of solvent. A solution containing the maximum 
possible quantity of solute is said to be saturated. If further 

230 
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solute is added to such a solution, it will not dissolve, and we 
can therefore say that a saturated solution is one which is in 
thermal equilibrium with the pure solute. 

T h e concentrat ion of the saturated solution is a measure of the 
ability of a given substance to dissolve in the solvent concerned , 
and is also called simply the solubility of the substance. 

T h e solubility in general depends on the temperature . By 
means of Le Chatel ier 's principle we may relate the nature of 
this dependence to the sign of the heat of solution. Let us suppose 
that dissolution is accompanied by absorpt ion of heat (as when 
ammonium chloride is dissolved in water) , and that we have a 
saturated solution in equilibrium with undissolved solid. If 
this system is heated it will no longer be in equilibrium, and 
processes must occur which tend to oppose the external inter
action (heating) which has brought the substance out of equilib
rium. In the present case this means that the solubility of the 
substance in water will increase so as to allow further dissolution, 
accompanied by a b s o φ t i o n of heat. 

T h u s , if dissolution is accompanied by absorption of heat , 
the solubility increases with tempera ture , but if heat is evolved 
on dissolution an increase in tempera ture will cause a decrease 
in solubility. 

T h e dissolution of a gas in a liquid is usually accompanied by 
a large decrease in volume: the volume of the solution is con
siderably less than the sum of the original volumes of the solvent 
and the dissolved gas (for example , when one mole of nitrogen is 
dissolved in a large quanti ty of water at room tempera ture and 
atmospheric pressure the volume of the liquid increases by only 
40 cm^, whereas the volume of this amount of gas is 22 400 cm^). 
H e n c e it follows, by Le Chatel ier 's principle, that the solubility 
of a gas in a Hquid increases with the gas pressure over the Hquid, 
at a given temperature . 

T h e way in which the solubility of a gas depends on its pressure 
is easily established for weak solutions. [Weak (or dilute) 
solutions are those in which the number of solute molecules is 
small in comparison with the number of solvent molecules.] 
Fo r this purpose we use the fact that thermal equilibrium (in 
this case , equilibrium between the gas and its saturated solution) 
is a dynamic equilibrium on a molecular scale. This means that , 
after equilibrium has been reached, the gas molecules pass from 

Pure Mathematical Physics



232 SOLUTIONS [χ 

the gas to the solution and back, but the number of molecules 
entering the solution from the gas per unit t ime is equal , in 
equilibrium, to the number of gas molecules leaving the solution 
per unit t ime. T h e number of gas molecules entering the hquid is 
proportional to the number of collisions per unit t ime between gas 
molecules and the liquid surface. This number in turn is propor
tional to the density of the gas (at a given temperature) , and 
therefore to its pressure . Similarly, the number of gas molecules 
leaving the solution is proportional to its concentrat ion. T h u s , 
from the equality of the two numbers , it follows that the con
centrat ion of a saturated solution, i.e. the solubihty of the 
gas, is proport ional to the gas pressure over the solution 
(Henry's law). 

It should be mentioned that this law is valid only for a weak 
solution, since in other solutions the foregoing arguments are 
invalid on account of the interaction be tween gas molecules in 
the solution. In consequence of this interaction the number of 
these molecules leaving the solution can no longer be assumed to 
be simply proportional to the concentrat ion. Henry ' s law is 
therefore applicable, for instance, to oxygen and nitrogen, whose 
solubility in water is low, but not to the dissolution of carbon 
dioxide or ammonia , which are readily soluble in water. 

In the great majority of cases , the dissolution of a gas is 
accompanied by evolution of heat ; this is a quite natural result of 
the passage of molecules from a gaseous medium, where the inter
action between molecules is weak, to a medium where the gas 
molecules are subject to a strong attraction exerted by solvent 
molecules. F o r this reason the solubility of gases in liquids 
decreases with increasing temperature (at a given pressure) . 

§78. Mixtures of liquids 
Substances which are so rarefied that the interaction be tween 

their molecules is unimportant can mix freely with one another . 
In this sense we may say that ah gases mix in any proport ions. 

In the mixing of liquids, however , various cases can occur. 
The re exist liquids which mix in any propor t ions , for example 
alcohol and water , but the mutual solubihty of other liquids is 
limited to various extents . F o r instance, water and paraffin are 
almost insoluble in each other; not more than 8% (by weight) 
of ether can be dissolved in water at room tempera ture , and so on. 
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The mutual solubility propert ies of liquids can be conveniently 
represented graphically by plotting as abscissa the concentrat ion 
c of the mixture (e.g. in percent by weight) and as ordinate the 
temperature (or the pressure, if we are considering the dependence 
of solubility on pressure at a given temperature) . 

Figure 97 shows a diagram of this kind for a mixture of water 
and phenol (CßHsOH). One of the vertical axes corresponds to 
0% water, i.e. pure phenol, and the other to pure water. 

100% 
phenol 

F I G . 97. 

All points outside the hatched region of the diagram correspond 
to homogeneous mixtures of the two components ; the curve 
forming the boundary of the hatched region represents the limit 
of their miscibiUty. F o r example, at the tempera ture corres
ponding to the horizontal line ae, the point b gives the Umiting 
solubility of water in phenol, and the point d that of phenol in 
water. If water and phenol are mixed in quantities corresponding 
to a point c within the hatched region, the liquid separates into 
two horizontal layers with the denser layer below and the less 
dense one above. These two liquid layers which coexist in equilib
rium represent two different phases . O n e is a saturated solution 
of water in phenol (represented by the point b), and the other is 
a saturated solution of phenol in water (the point d). It is easily 
shown, in exactly the same way as in §66 for the liquid-vapour 
phase diagram, that the quantities of the two phases will again 
be determined by the lever rule: they are inversely proportional to 
the lengths of cb and cd. 

If the mutual solubility of two liquids increases with tempera
ture, a point may be reached at which their miscibility becomes 
unrestricted. This occurs , for example , with phenol and water: at 
temperatures above 70°C, the two Uquids mix in any proport ions. 
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This hmiting temperature is called the critical temperature 
of mixing, and the corresponding point Κ in the phase diagram 
(Fig. 97) is called the critical point of mixing; the propert ies of 
this point are in many ways similar to the critical point in the 
equilibrium between a hquid and a gas. 

τ 
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There are also cases where the critical point is not the upper 
but the lower limit of the region of restricted miscibility of two 
liquids, for example water and triethylamine (N(C2H5)3), which 
mix in any proport ions at temperatures below a certain critical 
temperature (Fig. 98). Finally, in some cases there are two 
critical temperatures , an upper and a lower, be tween which the 
mutual solubility of the two liquids is restricted. This occurs , 
for instance, with water and nicotine (Fig. 99). 

§79. Solid solutions 
Some substances are capable of forming crystals containing 

the a toms of two different substances . These are called solid 
solutions or mixed crystals. T h e ability to form sohd solutions is 
especially common among metals , which form alloys with one 
another. 

Mixed crystals may be referred to as sohd solutions because 
the composit ion of the crystals can vary over a more or less wide 
range, whereas for crystals which are "chemica l c o m p o u n d s " 
the composit ion must be entirely definite. T h e crystal s t ructure 
of a solid solution is directly related to that of one or o ther 
component , but a chemical compound has a s t ructure of its own. 

T h e great majority of solid solutions are of what is called the 
substitution type. Such a solution is obtained by replacing some 
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of the atoms in the crystal lattice of one substance by atoms of 
the other substance. For such a replacement to be possible, the 
atoms of the new substance must of course be of about the same 
size as those of the solvent. Substitution-type solutions include, 
in particular, the majority of metal alloys. There are even cases 
of unrestricted mutual solubility of the two components of an 
alloy (for example, alloys of copper and gold); for this to be so it 
is evidently necessary that the two components should have 
crystal lattices of the same type. 

Solid solutions of the substitution type can be formed not only 
by elements but also by chemical compounds, in which case the 
phenomenon is called isomorphism. In such mixed crystals the 
atoms of one compound are replaced by atoms belonging to 
the other compound. 

It is not necessary that the two compounds should be chemi
cally similar in order to form solid solutions. The molecular 
structure of the two substances must be of the same type, how
ever. Thus, as well as chemically similar isomoφhous substances 
(such as ZnS04 and MgS04), we also find pairs of isomorphous 
substances which are chemically not at all similar: BaS04 and 
Κ Μ η θ 4 , PbS and N a B r , etc. 

For isomorphism, not only must the molecular structure be 
of the same type, but the crystal lattices must also be of the same 
type and have similar dimensions. For example, the significance 
of the dimensions is seen from the compounds KCl , K B r and KI, 
all of which have lattices of the same type (NaCl type) but with 
different distances between adjoining atoms (3-14, 3-29 and 3-52 
Á respectively). The comparatively small difference between 
the KCl and KBr lattices enables these compounds to form 
soUd solutions of any composition, but the larger difference 
between KCl and KI has the result that their mutual solubility 
is restricted. An even greater difference may entirely prevent 
isomoφhism. 

Another type of solid solution is the interstitial type. In these 
crystals the solute atoms penetrate between the solvent atoms, 
slightly increasing the distance between them. In other words, 
they occupy positions in the lattice which are not occupied in 
the pure solvent. Such solid solutions can, of course, exist only if 
the atoms of the solute are considerably smaller than those of 
the solvent. 
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Solid solutions of the interstitial type are formed, for example , 
by hydrogen, nitrogen and carbon in certain metals. F o r ins tance, 
carbon can dissolve (at high temperatures) in what is called y iron, 
a modiñcation of iron with a face-centred cubic s t ructure; in the 
resulting solution, called austenite, the carbon atoms occupy 
positions at the midpoints of the edges of the cubic ceUs, be tween 
the iron a toms at the vertices and face centres of these cells. 
U p to about 10% of such positions can be occupied. 

§80. Osmotic pressure 
If two solutions of different concentrat ions are separated by 

a porous partition, then both the solvent and the solute will pass 
through the partition until the two solutions are completely 
mixed. There are other parti t ions, however , which have selective 
transmission, i.e. allow some substances to pass through but not 
o thers ; they are said to be semipermeable. These include various 
animal and vegetable membranes , colloidal ñlms, and partit ions 
of porous clay or porcelain in which the pores are closed by films 
of copper ferrocyanide (Cu2Fe(CN)6). All these transmit water 
but retain substances dissolved in it. T h e passage of the solvent 
through such a partition is called osmosis. 

ρ 

EWater= :̂_Solutionj 

F I G . 100. 

If two vessels are separated by a semipermeable partition {P 
in Fig. 100), and one vessel contains a solution of sugar, say, in 
water , and the other contains pure water , then water is found to 
enter the vessel containing the solution; the solution as it were 
at tracts the solvent. This will continue until a certain difference 
in level is established between the water and the solution. T h e 
pressures in the two vessels are then unequal: in the vessel con
taining solution there is an excess pressure equal to the hydro
static pressure of the extra column of liquid in that vessel. This 
excess pressure is called the osmotic pressure of the solution. 
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The reason for this phenomenon is easily unders tood. Since 
only water can pass through the semipermeable partit ion, equilib
rium of the liquids in the two vessels does not require equality 
of the total pressures on the two sides of the partition. Equilib
rium is reached, roughly speaking, when the pressure in the 
vessel containing pure water becomes equal to that part of the 
pressure of the solution which is due to the water molecules. T h e 
total pressure in the solution will then exceed that in the o ther 
vessel by an amount which may be regarded as the pressure due 
to the sugar molecules. This is the osmotic pressure of the 
solution. 

If the solution is weak, the molecules of solvent are in general 
far apart , and therefore interact only very weakly with one 
another (though they interact, of course , with the solvent mole
cules). In this respect the solute molecules in a weak solution 
may be said to behave similarly to the molecules of an ideal gas. 
This in turn leads to a number of analogies be tween the propert ies 
of weak solutions and those of ideal gases. 

W e know that the pressure of an ideal gas is given by the 
formula ρ = NkTjV. It is found that the osmot ic pressure Posm of 
a weak solution is given by an analogous formula, 

Posm = nkTIV, 

where V is the volume of the solution and η the number of 
molecules of solute in it. This is van ' t Hoff 's formula. 

I t should be emphasised that the osmotic pressure of a weak 
solution (for a given volume and temperature) is determined only 
by the number of the solute particles and does not depend on 
their nature (or on the nature of the solvent) , jus t as the pressure 
of an ideal gas is independent of its nature . A s an example , we 
may mention that the osmotic pressure of a solution with a 
concentrat ion of 1/10 mole/litre is 2 - 2 4 atm. T h e osmot ic 
pressure of sea water is about 2-7 atm. 

If we have a weak solution of several substances in the same 
solvent, then, from the above discussion, the osmot ic pressure 
of the solution is determined by the total number of dissolved 
particles. I t is therefore equal to the sum of the "pa r t i a l " osmot ic 
pressures of the individual solutes (corresponding to Da l ton ' s 
law for gases). This should be borne in mind also when the 
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dissolution is accompanied by decomposi t ion of the molecules 
into parts (dissociation); this phenomenon will be discussed 
in §§89 and 90. T h e osmotic pressure of such a solution depends 
not only on the total quanti ty of solute but also on the degree 
to which its molecules dissociate. 

T h e analogy be tween a weak solution and an ideal gas ex tends 
further. F o r example, the height distribution of solute molecules 
in a field of gravity is given by a formula similar to the barometr ic 
formula (§54). This effect may be observed particularly clearly 
by using, instead of an ordinary solution, an emulsion consisting 
of very small particles of a substance suspended in a liquid. Since 
the mass of such particles is many t imes greater than that of the 
individual molecules, the variation of their concentrat ion with 
height is seen from the barometr ic formula to be much more 
rapid, and is therefore easily observed directly. [In the baro
metric formula we must , of course , substi tute the mass m of a 
particle in the emulsion minus the mass nto of the liquid displaced 
by it, in accordance with Arch imedes ' principle.] 

§81 . Raoul t ' s law 
W e know that , for a given pressure , there is a definite temper

ature , the boihng point, at which a liquid changes into a vapour . 
Let us now suppose that a non-volatile substance (i.e. one which 
does not vaporise when a solution of it in the hquid evaporates) 
is dissolved in the liquid; for example , sugar dissolved in water . 
It is found that the boiling point of the solution is different from 
that of the pure solvent (at the same pressure) . 

F r o m Le Chatel ier 's principle it is easy to deduce that the boil
ing point is raised when a solute is added. Let us consider a 
solution of sugar in water , in equilibrium with the vapour , and 
let a further quanti ty of sugar be added to the solution. T h e 
concentrat ion of the solution is increased, and the system is no 
longer in equilibrium. Processes must occur in it which tend 
to oppose the external interaction, i.e. to decrease the concen
tration. F o r this to be so, the boihng point must rise, so that 
some of the vapour condenses into water . 

T h e rise in the boihng point of the solution is shown in the 
pT diagram by the fact that the evaporat ion curve of the solution 
(curve 2 in Fig. 101) is somewhat to the right of curve 1, the 
evaporat ion curve of the pure solvent. A t the same t ime, as the 
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F I G . lOL 

Let us return to the equilibrium shown in Fig. 100 be tween 
pure water and a solution, separated by a semipermeable parti
tion, and suppose that the whole system is in a closed space 
fiUed with saturated water vapour. Since the gas pressure in a 
field of gravity decreases with increasing height, the vapour 
pressure over the surface of the water will be greater than that 
over the solution, in accordance with the foregoing discussion. 
T h e pressure difference δρ is clearly that due to a column of 
vapour of height Λ: 

δρ = p^gh, 

where is the density of the vapour . T h e height h is determined 
by the osmotic pressure Posm of the solution: the pressure of the 
column of liquid balances the pressure Posm- T h e formula for the 
osmotic pressure gives 

Pigh = Posm = nkT/Vi; 

we shall take η to be here the number of molecules of solute 
per unit mass of Hquid, so that Vi is the specific volume of the 
Hquid, Vi = Xjpi. H e n c e , substituting gh = nkT in the expression 
for δ/7, we obtain 

δp = p^nkT = nkT|V^, 

diagram shows, curve 2 Ues below curve 1. This means that 
the saturated vapour pressure of the solvent above the solution 
is less than that of the pure solvent at the same tempera ture . 
T h e decrease 8p in the saturated vapour pressure and the rise 
δ Γ in the boiHng point when the solute is present are shown in 
the diagram by the vertical and horizontal lines be tween the two 
curves. These quantities can be calculated if the solution is a 
weak one , as wiH be assumed below. 
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Finally, regarding the vapour as an ideal gas, we have its specific 
volume = NkTIp, where Ν is the number of molecules per 
unit mass of vapour or, what is the same thing, per unit mass of 
water. T h e final result is 

δρΙρ = nIN, 

This is the required formula: the relative decrease in the vapour 
pressure is equal to the molecular concentrat ion of the solution, 
i.e. the ratio of the numbers of solute and solvent molecules 
(or, what is the same thing, the ratio of the numbers of gram-
molecules). This is called Raoulfs law. W e see that the change 
in the vapour pressure over the solution is independent of the 
specific propert ies of the solvent and solute; only the numbers of 
molecules are involved. 

This latter proper ty does not hold good for the other quanti ty 
under discussion, the rise δ Γ in the boihng point. This is easily 
found by noting that the small quantit ies bp and δ 7 are related by 

δ/7 = (dpldT)dT. 

Using the Claus ius -Clapeyron equation 

dpldT = qplRr 

(where q is the molar heat of evaporat ion; see §68), we obtain 

8T = (RTVqp)8p. 

Finahy, substituting dpip = n/N, we find 

8T = RT^nlqN. 

T h e presence of a solute also affects the freezing point of a 
hquid. In the great majority of cases the solute does not enter 
the sohd phase , i.e. pure solvent freezes out of the solution. Jus t 
as for evaporat ion, we can use Le Chatel ier 's principle and easily 
prove that the presence of solute lowers the freezing point. It is 
also found that the quanti tat ive formula for the amount of this 
depression δ Γ is the same as the formula derived above for the 

Pure Mathematical Physics



§82] B O I L I N G O F A M I X T U R E O F L I Q U I D S 241 

100% No Ι007οθ2 

F I G . 102. 

As an example of the first type we take a mixture of Hquid 
oxygen and liquid nitrogen (Fig. 102). O n e of the vertical axes 
in the diagram corresponds to pure nitrogen and the o ther to 
pure oxygen, and be tween them lie aH intermediate concentrat ions . 

T h e region above the upper curve cor responds to states of 
the high-temperature phase , i.e. the gaseous mixture , and the 

change in the boiHng point, q now signifying the molar heat of 
fusion of the solvent. 

T h e lowering of the freezing point is often used to determine the 
the molecular weight (the cryoscopic method) . After dissolving a 
known weight of the substance under investigation, we determine 
δ Γ , and hence calculate from the above formula the number of 
dissolved molecules, and so the molecular weight. T h e molecular 
weight can similarly be determined from the rise in the boiling 
point. 

§82. Boiling of a mixture of liquids 
When a mixture of two Hquids boils, both components of the 

mixture generally vaporise, so that we have an equilibrium of a 
liquid and a gaseous phase each of which is a mixture. T h e 
resulting phenomena can be most clearly represented by means 
of a phase diagram, with the concentrat ion c of the mixture on 
one axis and the temperature Τ or the pressure ρ on the other. 
H e r e we shall consider cT diagrams for a given value of the 
pressure. 

The re are various types of phase diagram for the boiling of a 
Hquid mixture. H e r e we shall consider those which occur for 
substances that mix in any proport ions in the liquid state. 
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region below the lower curve corresponds to states of the hquid 
mixture. T h e hatched region be tween the two curves cor responds 
to equilibrium between liquid and vapour , the condit ions of the 
liquid and vapour in equihbrium being determined by the points 
of intersection of the horizontal hne through a given point with 
the two curves. F o r example , at the point a equilibrium exists 
be tween a gas whose composit ion is given by the abscissa of the 
point b and a liquid represented by the point c; the relative 
quantit ies of gas and liquid are inversely proport ional to the 
lengths of ab and ac. T h e upper curve ADB is called the vapour 
curve and the lower curwt AC Β the liquid curve. A phase diagram 
of this shape is often referred to as a "c igar" . 

T h e points / Í and Β represent the boihng points of pure nitrogen 
and oxygen. Suppose that we have a liquid mixture whose com
position corresponds to the vertical hne GH in Fig. 102. When 
such a mixture is heated, its state will vary along the line GC 
until the point C is reached. A t this tempera ture the liquid begins 
to boil, but the composit ion of the vapour which boils off is not 
the same as that of the hquid: it is the composit ion which can be 
in equihbrium with the hquid at this tempera ture , i.e. that which 
is given by the point D. T h u s the vapour which boils off has a 
higher nitrogen concentrat ion than the liquid. Accordingly, the 
composit ion of the liquid will move towards an increasing content 
of oxygen. On further heating, therefore, the point representing 
the state of the liquid will move upwards along the curve CB. T h e 
vapour which boils off wiU be represented by a point which moves 
upwards along the curve DB. 

W e see that the mixture does not boil at a constant temperature , 
unhke a pure liquid. T h e point at which boiling ceases depends 
on the conditions under which it occurs . If the vapour which 
boils off remains in contact with the liquid, the total composi t ion 
of the liquid and vapour remains fixed, and the states of the 
system are always represented by points on the hne GH. H e n c e 
we see that boiling begins at the point C and ends at the tem
perature of the point Ε where the vertical line GH intersects the 
upper curve of the "c igar" . 

If, however , boihng takes place in an open vessel and the 
vapour which boils off is steadily removed, only the vapour 
which has jus t boiled is in equihbrium with the hquid at any 
instant. A quanti ty of liquid, on boiling, is conver ted entirely 
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into vapour , i.e. the resulting quantity of vapour must have the 
same composit ion as the boiling liquid. T h u s the last part of the 
boiling process occurs at a point where the composit ion of the 
hquid and that of the vapour are the same, i.e. at the boiling point 
Β of pure oxygen. 

Exactly similar effects occur in the condensat ion of a vapour 
into a liquid. 

Another type of phase diagram occurs , for example , for a 
mixture of chloroform and acetone (Fig. 103). This differs from 
the previous case in that the two curves have a maximum point 
A, at which they touch. H e r e again, the region be tween the curves 
corresponds to Hquid and vapour in equilibrium, while the regions 
above and below the curves correspond to the gaseous and liquid 
phases . 

T| 

61 

Chloroform 

56« C 

Acetone 

F I G . 1 0 3 . 

BoiHng or condensat ion occurs in a similar manner to the 
preceding case. F o r example, when liquid boils in an open vessel , 
the points representing the states of the liquid and the vapour 
move upwards along the two curves , but the process now 
terminates not at the boiling point of one of the pure components 
but at the point A where the curves touch. At this point the 
composit ion of the liquid is the same as that of its vapour. A 
mixture whose composit ion corresponds to the point A (called 
an azeotropic mixture) therefore boils away completely at a 
constant tempera ture , as if it were a pure substance. 

Finally, there are mixtures (for example , carbon disulphide 
and acetone) whose phase diagrams differ from the preceding 
type only in that the curves have minima instead of maxima 
(Fig. 104). 

T h e effects described above are widely used in pract ice in 
order to separate the components of various mixtures . In its 
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simplest form, the method of fractional distillation consists 
in collecting and condensing the initial fractions of the vapour 
boiling off from a liquid mixture, and then redistilUng the resulting 
substance. F o r example, when a mixture of alcohol and water 
boils, the vapour formed has a higher content of the more volatile 
alcohol than is present in the Hquid. By condensing the initial 
fractions of this vapour and again boiHng the resulting Hquid, 
we can separate the water and the alcohol more and more 
completely. When the phase diagram is of the type shown in 
Fig. 102 the components of the mixture can, in principle, be 
completely separated by repeating the process several t imes. 
When the phase diagram is as in Fig. 103 or 104, however , 
complete separation is not possible: only an azeotropic mixture 
can be separated, together with one or the other pure substance, 
depending on the composit ion of the original mixture. T h e 
mixture of water and alcohol mentioned above is of this type ; it 
has a minimum boiHng point at a composit ion of 95-6% by weight 
of alcohol. T h e alcohol cannot be further purified by fractional 
distiUation. 

§83. Reverse condensation 
T h e existence of critical points for liquid-gas transit ions in 

pure substances has the result that critical phenomena occur 
in mixtures also. Without analysing all possible variations, let 
us consider some characterist ic features of these phenomena. 

T h e phase diagram of oxygen-ni t rogen mixtures shown in 
Fig. 102 refers to a pressure of 1 atm. At higher pressures the 
diagram remains of the same type , but only up to the critical 
pressure of one of the pure components , in this case nitrogen, 
at 33-5 a tm (the critical pressure of oxygen is 49-7 atm). S ince . 
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pure nitrogen cannot separate into phases above this point, it is 
evident that the "c iga r " in the phase diagram of the mixtures 
must become " d e t a c h e d " from the vertical axis and become of 
the form shown in Fig. 105. W e see that a point Κ is now present 
in the diagram at which the two coexisting phases become 
identical; this is called the critical point. H e r e again the presence 
of the critical point means that a cont inuous transition is possible 
between hquid and gas, so that the distinction be tween these two 
phases becomes arbitrary. 

F I G . 1 0 5 . 

T h e condensat ion of a gas mixture may be accompanied by 
unusual phenomena when there is a critical point in the phase 
diagram. W e may illustrate these by means of a cp diagram (for 
a given value of the temperature) , which more nearly cor responds 
to the usual conditions under which they are actually observed. 

Figure 106 shows part of such a phase diagram near the critical 
point K\ unlike the cT diagrams used above , the gas phase cor
responds to the region below the hatched area, i.e. the region of 
low pressures . 

Composition 

F I G . 1 0 6 . 
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Let us consider a mixture whose composit ion corresponds to 
the vertical line AC. In isothermal compression, when the point 
Β is reached, the mixture begins to condense , forming a liquid 
phase B ' . As the pressure is further increased, the quanti ty of 
hquid at ñrst increases but later decreases , and when the point 
C is reached the hquid (which is then represented by the point 
C ) disappears entirely. This phenomenon is called reverse 
condensation. 

§84. Solidification of a mixture of liquids 
T h e phase diagram for a liquid and a solid can be represented 

in the same way as that for a hquid and a gas. W e again plot the 
concentrat ion of the mixture (percent by atoms) as abscissa, and 
the temperature as ordinate , and consider the diagram for a given 
pressure . 

9 6 0 °C 

F I G . 1 0 7 . 

If the two substances mix in any proport ions both in the hquid 
and in the solid state, then the form of the diagrams is exactly 
similar to the hquid-gas phase diagrams discussed in §82. F o r 
example, an alloy of silver and gold has the phase diagram shown 
in Fig. 107. T h e region above the curves corresponds to hquid 
mixtures of the two metals , and the region below the curves 
corresponds to solid alloys. T h e process of melting of the alloy 
occurs similarly to the boiling of a hquid mixture as described 
in connect ion with Fig. 102. 

T h e phase diagram for the bismuth-cadmium system, shown 
in Fig. 108, is of an entirely different type. This sys tem has the 
property that the two components form no sohd solutions. 

T h e region which is not hatched corresponds to liquid mix
tures . In ah the other regions there is separation into two phases . 
In region I the two phases are solid crystals of pure cadmium 
(represented by the left-hand vertical axis) and a liquid (re-
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presented by the curve AO). F o r example , at a point d in this 
region there is equilibrium be tween phases represented by the 
points where the horizontal Hne ef meets the ordinate axis (pure 
cadmium) and the curve AO (Hquid mixture) ; the quantit ies of 
these phases are inversely proport ional to the lengths de and df 
Similarly, in region I I the solid phase is b ismuth in equilibrium 
with a Hquid whose composit ion is determined by the curve OB. 
Finally, in region I I I there is a mixture of solid crystals of 
cadmium and bismuth. 

321 «C 
271 «»0 

144 «0 

F I G . 1 0 8 . 

T h e points A and Β are the melting points of pure cadmium 
and pure bismuth. T h e curwe AO Β gives the tempera ture at which 
Hquid mixtures of the two components begin to soHdify. 

Let us consider, for instance, the process of solidification of a 
Hquid mixture whose composi t ion is given by the vertical line 
ab. T h e solidification begins at the tempera ture of the point b at 
which this vertical Hne intersects the curve AO, and crystals of 
cadmium separate from the Hquid. A s the tempera ture decreases 
further, the liquid mixture becomes r icher in bismuth, and the 
point representing it moves downwards along the curve bO until 
the point O is reached. T h e tempera ture then remains cons tant 
until the liquid has completely solidified. A t the tempera ture of 
O, crystals of the remaining cadmium and ah the b ismuth that 
was in the Hquid are formed. 

T h e point O is called the eutectic point. I t is a point at which 
three phases are in equilibrium: solid cadmium, soHd bismuth, 
and the Hquid mixture. T h e crystalline mixture which solidifies 
out at the eutectic point consists of very small crystals of each 
component , called a eutectic mixture. T o the right of O, in region 
I I I , the eutect ic mixture contains larger crystals of previously 
soHdified bismuth, and to the left, crystals of cadmium. 
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Figure 109 shows the typical form of the " c o o h n g c u r v e " 
corresponding to Fig. 108. H e r e the tempera ture of the sys tem 
is plotted as a function of time during slow coohng of a liquid 
of given composit ion (in this case corresponding to the vertical 
line ab). When the point b is reached, a break occurs on the 
cooling curve ; because solidification begins, which is accompanied 
by the evolution of heat , the cooling becomes somewhat slower. 
At the temperature of the eutectic point there is a "p l a t eau" : 
the curve has a horizontal section, corresponding to the complete 
solidification of the alloy at a constant temperature . T h e recording 
of such coohng curves is the basis of the derivation of phase 
diagrams by the method of thermal analysis. 

Time 

F I G . 109. 

T h e phase diagram of the s i lver -copper system, shown in 
Fig. 110, differs from the previous one in that each of its solid 
components can dissolve a certain amount of the other. T h e 
diagram therefore contains three single-phase regions: in addition 
to region I (liquid mixtures) , we have region Π (solid solutions of 
copper in silver) and region Π I (solid solutions of silver in 
copper) . 

779 °C 

F I G . 110. 
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We may note that the study of phase diagrams by means of 
thermal analysis can itself provide information as to the existence 
of soUd chemical compounds of various substances . T h e exis
tence of a compound is shown by the presence on the melting 
curve of a maximum (as at Β in Fig. 111) or a break (as at A). 

There is a great variety of phase diagrams for different mix
tures. T h e few diagrams described here are among the simplest. 
These examples show, however , the characterist ic propert ies 
and types which may be seen in more complicated diagrams also. 

Finally, let us consider the phase diagram of the a lumin ium-
calcium system (Fig. 111). In this case , although the two com
ponents do not form solid solutions, there exist certain chemical 
compounds ; we might say that only solid solutions of certain 
definite composit ions exist. T h e vertical Une BD cor responds to 
the compound CaAlg. T h e point Β is the melting point of this 
compound, and is the maximum of the curve ABC. Ano the r 
compound, CaAU, decomposes before melting begins. T h e 
vertical line EF corresponding to this compound therefore does 
not reach the boundary AB of the liquid state. All the hatched 
areas are regions of separation into two phases . T h e two phases 
that are in equilibrium are always given by the points of inter
section of a horizontal Une with the two nearest vertical lines in 
the diagram. F o r example, in region I the Uquid is in equilibrium 
with crystals of the compound CaAlg; in region I I , with crystals 
of CaAU; in region I I I , crystals of aluminium with crystals of 
CaAU, and so on. 
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§85. The phase rule 
W e shall now recapitulate and generalise some of the propert ies 

of phase equilibrium described in Chapters I X and X. 
T h e thermal state of a homogeneous body consisting of a 

single substance is defined by the values of two independent 
quanti t ies, the tempera ture Τ and the pressure /?. If a further 
phase of the same substance is added (e.g. ice and water) , these 
phases can coexist not at all values of ρ and Τ but only when a 
certain relation holds (represented by a curve in the pT diagram). 
W e may say that the equilibrium with ice imposes on the equat ion 
of state of water a further condition, as a result of which the 
number of independent quantit ies is reduced from two (p and T) 
to one (p or Γ). 

Three phases of one substance (e.g. water , ice and steam) can 
coexist only for certain definite values of ρ and Γ, where the 
i ce -wa te r and s t eam-wa te r equilibrium curves intersect. W e 
may say that the addition of a third phase imposes a further 
condition, as a result of which the number of independent 
quantities is reduced to zero. 

H e n c e it is clear that four phases of one substance (e.g. water , 
s team, and two forms of ice) can not exist in equilibrium. Such 
an equilibrium would require three added condit ions to be satis
fied, and this can not be achieved by means of the two disposable 
variables ρ and T. 

Let us now consider a body consisting of two substances , such 
as a hquid solution. I ts state is defined by three independent 
variables: the tempera ture Γ, the pressure ρ and the concentra
tion c. Let this solution be in equilibrium with its vapour (con
taining the same two substances) . This imposes a certain further 
condition, and only two of the three quantities describing the 
state of the solution remain arbitrary. Thus equilibrium be tween 
a liquid solution and a vapour is possible at any pressure and 
tempera ture (for example) , but the concentrat ion of the solution, 
and therefore that of the vapour , must then have a definite value. 
W e have already seen this from the phase diagrams in the present 
chapter . 

If a further phase is added which consists of the same two 
substances , this imposes a further condition, and only one 
variable remains arbitrary. F o r instance, at a given pressure 
three phases can coexist at only one point, with a definite tem-
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perature and definite concentra t ions . T h e eutectic point in the 
phase diagrams in §84 is a point of this type. 

Finally, four phases of two components can be in equilibrium 
only for certain values of all the quantit ies (pressure, t empera ture 
and concentrat ions) , and the equilibrium of five (or more) phases , 
is impossible. 

These s ta tements are easily generaHsed to the equilibrium of 
phases containing any number of components . Le t the number 
of components be n, and the number of coexisting phases r; 
and let us consider one phase . I ts composi t ion is specified by 
the values of n—\ concentra t ions , for example the ratios of the 
quantities of each of n—\ components to that of the nth. T h u s 
the state of the phase is defined hy n+\ quanti t ies: p, Τ and 
n— 1 concentrat ions . But this phase is in equilibrium with r— 1 
other phases , which imposes r—\ extra condit ions on its equat ion 
of state. These must not exceed the number of variables, i.e. 
η + 1 must not be less than r — 1, or in o ther words 

r ^ A2 + 2. 

T h u s not more than n-\-2 phases composed of η substances can 
coexist in equilibrium. This is called the phase rule. 

When the maximum number {n + 2) of phases coexist , aU the 
quantit ies which describe the states of the phases {p, Τ and the 
concentrat ions of all the phases) must have definite values. When 
r phases are in equilibrium, the values of{n-l·\) — {r—l) = n-l·2 — r 
quantit ies may be specified arbitrarily. 
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§86. Heats of reaction 
This chapter wih deal with chemical react ions from the 

physical point of view, having regard to propert ies which are 
common to all react ions, whatever the chemical nature of the 
reacting substances . 

Any chemical reaction is accompanied by absorption or 
evolution of heat. In the former case the reaction is said to be 
endothermic, and in the latter case exothermic. I t is clear that , 
if a reaction is exothermic, the reverse reaction is endothermic , 
and vice versa. 

T h e heat involved in a reaction depends in general on the condi
tions under which it occurs . H e n c e , strictly speaking, we should 
distinguish the quantity of heat according as the reaction occurs 
at constant pressure or at constant volume. In pract ice, however , 
the difference is usually very slight. 

T h e heat of reaction is writ ten in the reaction equation with a 
positive sign on the side where heat is evolved, or with a negative 
sign where it is absorbed. F o r example, the equation 

C + O2 = CO2 + 4 0 0 k J 

signifies that 400 kJ of heat are evolved in the combust ion of 
one gram-atom of carbon (graphite). T w o further examples are 

iH2 + iCl2 = H C l - f 92, 

éN2 + ÍH2 = N H 3 + 46; 

here, as in all subsequent examples , the heat is again stated in 
kilojoules per mole of the reacting substances . 

In the above examples it has been assumed that all the sub
stances (except graphite) are in the gaseous state (at room 

252 
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temperature and atmospheric pressure) . T h e aggregate state of 
the reacting substances must be specified, since the heat of 
reaction depends on this state, and the dependence may be very 
considerable. As an example, let us find the difference be tween 
the heats of formation of liquid water and s team from gaseous 
oxygen and hydrogen. T h e heat of evaporat ion of a gram-
molecule of water (at 20°C) is 44 kJ, i.e. 

H 2 0 ( g a s ) = H 2 0 ( l i q ) + 44. 

Adding this to the equation of formation of s team, 

H2 + iO2 = H2O(gas) + 240, 

we obtain the equation of formation of hquid water , 

H2 + i02 = H20(liq) + 284. 

T h e heat of reaction also depends , of course , on the tempera
ture at which the reaction takes place. T h e value is easily con
verted from one temperature to another if the specific heats of 
all the reacting substances are known, in the same way as we 
have jus t converted the value from one aggregate state to another . 
T o make the conversion it is necessary to calculate the heat 
required to bring all the substances which participate in the 
reaction from one temperature to another . 

If several reactions occur in succession, it follows from the 
law of conservat ion of energy that the total heat of the whole 
sequence of reactions is equal to the sum of the heats of each 
successive reaction. W e can say, moreover , that, if we start 
from certain given substances and produce other substances by 
a series of intermediate react ions, the total heat evolved is 
independent of the intermediate stages through which the reaction 
took place. 

By means of this rule we can, in particular, calculate the heats 
of reactions which in practice could never occur. Let us find, 
for example, the heat of formation of acetylene gas directly from 
the elements carbon (graphite) and hydrogen: 2C -h H2 = C2H2. 
This reaction cannot occur directly and in pract ice is brought 
about by other means ; the heat of react ion therefore cannot be 
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measured directly. W e can, however , calculate this heat from 
the known (directly measurable) heats of combust ion of carbon, 
hydrogen and acetylene itself: 

2 C + 202= 2CO2 + 8OO, 
H2 + i O 2 = H 2 O + 240, 

C2H2 + f O2 = 2CO2 + H 2 O + 1300. 

Adding the first two equations and subtracting the third, we 
obtain 

2 C + H 2 = C 2 H 2 - 2 6 0 . 

T h e heat of formation of a compound from its elements 
depends on their state. In physics the heat of formation from 
the atoms of the elements is of interest , not that from the elements 
in their natural state. T h e heat of formation from the a toms 
determines the internal energy of the compound as such and is 
independent of the state of the initial substances . Some examples 
are 

2 H = H2 + 4 3 5 , 

2 0 = 0 2 + 500, 

C(atoms) = C(graphite) + 720, 

2C(atoms) + 2 H = C 2 H 2 + 1600. 

T h e heat of formation of a compound from the elements may 
be either positive or negative, but the heat of formation from 
the a toms is always posit ive, since otherwise the compound would 
be unstable and could not exist. 

§87. Chemical equilibrium 
A s a chemical reaction proceeds , the quantit ies of the original 

substances decrease , and reaction products accumulate . Ulti
mately, the reaction leads to a state in which the quantit ies of all 
the substances no longer vary. This is called a state of chemical 
equilibrium, a particular case of thermal equilibrium. 
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In chemical equilibrium there is generally present a certain 
quantity of the original substances as well as the products 
formed in the reaction. It is t rue that in many cases this quanti ty 
is very small, but this does not, of course , affect the principle. 

T h e es tabhshment of chemical equilibrium in which both 
initial and final substances are present occurs for the following 
reason. Let us consider, for example , a reaction be tween hydrogen 
and iodine gases to form hydrogen iodide: 

H2 + l2 = 2 H I . 

As well as the formation of H I from H2 and I2, in a mixture of 
these three substances the reverse process of dissociation of 
H I into hydrogen and iodine will also necessari ly occur: the 
forward reaction is always accompanied by the reverse reaction. 
As the quanti ty of H I increases and that of H2 and I2 decreases , 
the forward reaction will obviously become slower and the 
reverse reaction quicker, and a point is finally reached at which 
the rates of the two reactions become equal, with the same 
number of new H I molecules formed as dissociate in the same 
time. T h e quantities of all the substances thereafter remain 
unchanged. 

T h u s chemical equilibrium (and in fact o ther types of thermal 
equilibrium) is dynamic on the molecular scale; the react ions do 
not actually cease , but the forward and reverse react ions occur at 
equal rates and therefore produce no overall effect. 

It is clear that , if the reaction in the above example begins 
from a mixture of hydrogen and iodine, the relative quantit ies of 
all three substances in the equilibrium state will be the same as in 
a reaction which begins with the decomposi t ion of pure H I . T h e 
chemical equilibrium position does not depend on the side from 
which it is approached. 

Moreover , the chemical equilibrium also does not depend on 
the conditions under which the reaction occurs or on the inter
mediate stages through which it passes . T h e position of equilib
rium depends only on the state of the substances in equilibrium, 
i.e. on the temperature and pressure of the equilibrium mixture. 

When the tempera ture changes, the posit ion of chemical equilib
rium is altered. T h e direction of this shift depends entirely on the 
heat of reaction, as is easily seen by means of Le Cha teher ' s 
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principle. Let us consider an exothermic reaction, such as the 
formation of ammonia from nitrogen and hydrogen (N2 + 3 H 2 
= 2NH3), and assume that the reaction has already reached a 
state of equilibrium. If the equilibrium mixture is now heated, pro
cesses must occur in it which tend to cool it: a certain quanti ty 
of ammonia must decompose , and heat is thus absorbed. This 
means that the chemical equilibrium is shifted in the direction 
such that the quantity of ammonia is decreased. 

Thus the "y ie ld" of exothermic reactions decreases when the 
tempera ture is raised; in endothermic react ions, on the other 
hand, the yield increases with increasing temperature . 

Similarly, the dependence of the equilibrium position on the 
pressure is related to the change in volume accompanying the 
reaction (at constant pressure) . Increasing the pressure lowers 
the yield of reactions in which the volume of the reacting mixture 
increases, and raises that of reactions in which the volume de
creases . T h e latter case occurs , for instance, in the reaction of 
formation of gaseous ammonia: since the number of NH3 mole
cules formed is less than the number of reacting N2 and H2 
molecules, the volume of the gas mixture decreases in the 
reaction. 

§88. The law of mass action 

W e shall now give a quantitative formulation of the concept 
of chemical equilibrium. Le t us ñrst consider chemical react ions 
in a gas mixture, all the substances participating in a reaction 
being in the gaseous state. 

A s an example we shall again take the reaction of formation 
of H I . T h e reaction be tween hydrogen and iodine can occur 
when H2 and I2 molecules coUide. T h e rate of the reaction of H I 
formation (i.e. the number of H I molecules formed per unit 
time) is therefore proport ional to the number of such collisions. 
This number in turn is proport ional to the densities of hydrogen 
and iodine in the mixture, i.e. the numbers of molecules of 
hydrogen and iodine per unit volume. T h e density of a gas is 
proportional to its pressure . T h u s the rate of the reaction of H I 
formation is proportional to the partial pressures of these gases 
in the mixture, i.e. is k^H^Pu^ where the coefficient k^ depends 
only on the temperature . Similarly, the rate of the react ion of 
H I decomposi t ion is proport ional to the number of colhsions 
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between H I molecules, and therefore to the square of the partial 
pressure of H I in the mixture; let it be k2Pm^' 

In equilibrium, the rates of the forward and reverse react ions 
are equal: 

Putting k^lki = K(T), we thus have 

PH2PiJPm = K{T), 

This equation relates the partial pressures of all three gases in 
the equilibrium state. T h e quanti ty Α:(Γ) is called the equilibrium 
constant for the reaction concerned. It is independent of the 
quantities of the reacting substances . T h e relation expressed by 
the above formula is called the law of mass action. 

This law can be writ ten in a similar form for any other reaction 
be tween gases. It may be writ ten in a general form as follows. 

In the chemical equation for the reaction we can arbitrarily 
transfer all the terms to the same side, writing e.g. 

H2 + l 2 - 2 H I = 0. 

Any reaction may be represented in the general form 

i^iAi-hi^2A2+ · · · = 0, 

where Aj, A 2 , . . . are the chemical symbols of the reacting sub
stances, and Pu^2,"' are positive or negative integers; for 
instance, in the above example ^ 1̂2 = 1̂  ^HI = ~ 2 . Then the 
law of mass action takes the form 

ΡΓ/72^^··· = /̂ (Τ), 
where PuP2,... are the partial pressures of the various gases. 

It is often more convenient to use the concentrat ion of the 
substances in the mixture, instead of the partial pressures . W e 
define the concentrat ion of the ith substance in the mixture as 
the ratio = Ν J Ν of the number Ν i of molecules of this sub
stance to the total number Ν of molecules in the mixture, or . 
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what is the same thing, the ratio of the corresponding numbers 
of moles. Since the total pressure of the gas mixture is ρ = NkTIV, 
where V is the volume of the mixture, and the partial pressures 
Pi = NikTjV, we have 

Pi = Cip. 

Substituting these expressions in the equation of the law of 
mass action, we obtain the latter in the form 

c / * C 2 ^ ^ . . . = /^(7)ρ-(»Ί+»^2+.·.) 

which relates the equilibrium concentrat ions of aU the substances . 
T h e quanti ty on the right of this equation is also called the 
equilibrium constant , but may depend on the pressure as well 
as on the temperature . It is independent of the pressure only 
if the sum î iH-1^2 + · · · = 0, i.e. if the total number of molecules 
is unchanged in the reaction (as, for example , in the react ion 
H 2 + l 2 = 2 H I ) . 

For the reaction of ammonia formation, for instance: 

N 2 + 3H2 = 2 N H 3 , 

we have 

C N . C H / / W = / C ( 7 ) / / 7 ^ 

When the pressure increases , the right-hand side of this equation 
decreases , and the left-hand side must therefore decrease also. 
T h u s the equilibrium concentrat ions of the initial substances 
decrease and that of ammonia increases, in agreement with the 
result previously found by means of Le Chatel ier 's principle. 
W e have also seen that the yield of this reaction must decrease 
with increasing tempera ture ; we can now say that in this case the 
equihbrium constant K(T) increases with temperature . 

T h e following comment must be made regarding the foregoing 
derivation of the law of mass action. In our discussion it has 
been assumed that the course of the reaction is as represented 
by the chemical equation. In the reaction of H I formation this 
is in fact so, but the majority of reactions do not really take 
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place in the way that would be expected from the equat ion; for 
example, the formation of an ammonia molecule does not occur 
by the collision of a nitrogen molecule with three hydrogen 
molecules. T h e representat ion of the reaction by a single equation 
is usually a mere summary of a sequence of intermediate s teps , 
taking into account only the initial and final substances . W e 
shall discuss this further below. T h e propert ies of chemical 
equilibrium and the law of mass action describing them are , 
however , independent of the actual react ion mechanism. 

T o illustrate the application of the law of mass action, let us 
make a complete analysis of the simple reaction of dissociation 
of hydrogen: 

H2 = 2 H , 

and determine the degree of dissociation which is reached at 
equilibrium. Le t the total number of hydrogen a toms (both 
isolated and in molecules) be A. T h e degree of dissociation χ 
may be defined as the ratio of the number Nu of hydrogen a toms 
to the total number of a toms A. T h e n 

Nu=Ax, Nu2 = U{\-x\ N = Nu-^Nu2 = iA(l+xl 

Expressing the concentrat ions C H and c^^ in terms of these 
quantities and substituting in the law of mass action, we find 

CuJcn' = (l-x')l4x' = pK, 

whence 

x= l / V ( l + 4 / ? / C ) ; 

this determines , in particular, the way in which the degree of 
dissociation depends on the pressure . 

If several different reactions can occur in a gas mixture , the 
law of mass action must be applied to each reaction separately. 
F o r example, in a mixture of the gases H2 , O2, C O , CO2 and 
H 2 O , the following reactions can occur: 

2 Η 2 Θ = 2 Η 2 + Θ 2 , 2CO + 0 2 = 2C02 . 
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For these reactions we have 

PH20^IPH2^PO2 = 

and the state of chemical equilibrium is determined by the 
simultaneous solution of these two equat ions. In the mixture 
considered, other reactions can occur , for example 

H20 + C O = C 0 2 + H2 

but this reaction need not be considered, as it is jus t the sum of 
the two reactions written above , and the law of mass action would 
give an equation which is simply the product of the two equations 
previously derived. 

Let us now consider a reaction which involves not only gases 
but also a solid. T h e reaction between the solid and a gas molecule 
can occur when the latter collides with the surface of the solid. 
T h e number of collisions of gas molecules with unit area of the 
surface obviously depends only on the density of the gas and not 
on the quantity of the solid. Accordingly, the rate of reaction 
per unit area of the surface of the solid will be proportional only 
to the partial pressure of the gases and does not depend on the 
quanti ty of the solid. H e n c e it is clear that the law of mass action 
is valid also for reactions which involve solids, with the differ
ence that the equation for it includes only the concentrat ions of 
the gases and not the quanti ty of solids. T h e propert ies of the 
latter affect only the temperature dependence of the equilibrium 
constant . 

F o r example, in the decomposit ion of l imestone with the 
evolution of carbon dioxide, 

C a C 0 3 = C a O + C 0 2 , 

the only gas is CO2 (since the calcium oxide remains sohd). T h e 
law of mass action therefore gives simply 

PC02 = Kin 

Pure Mathematical Physics



§88] T H E L A W OF MASS ACTION 261 

This means that in equiHbrium (at a given temperature) carbon 
dioxide over l imestone must have a definite partial pressure . 
This is similar to the case of evaporat ion, where again the gas 
pressure over a body is determined only by the tempera ture 
and does not depend, for example , on the quanti ty of either 
substance. 

T h e law of mass action also holds good for reactions be tween 
substances in solution if the solution is a weak one ; here again 
we have an analogy between the propert ies of gases and those 
of weak solutions, as already noted in §80. T h e derivation of 
the law of mass action for gas reactions has been based on a 
calculation of the number of collisions be tween molecules. A 
similar calculation can be made for reactions in solution; the 
fact that the reacting molecules are not in a vacuum but in a 
medium, the solvent, affects only the dependence of the equilib
rium constant on temperature and pressure . In the equat ion of 
the law of mass action, 

C i - ^ c / ^ . . . = /C(p, Γ), 

the dependence of Κ on both tempera ture and pressure therefore 
remains unknown. T h e concentra t ions C i , C 2 , . . . in this equation 
are now defined as the quantit ies of solutes in a given quantity 
(or per unit volume) of the solvent. 

A similar formula is vaHd for react ions which involve not only 
the solutes but also the solvent, for example the hydrolysis of 
cane sugar to glucose and fructose which occurs in an aqueous 
sugar solution. Since the number of water molecules is much 
greater than the number of sugar molecules (the solution being 
assumed weak) , the concentrat ion of water is practically un
changed by the reaction. T h u s , in the equation of the law of mass 
action, only the solute concentrat ions need be included: 

[cane sugar] ^ 
[glucose] [fructose] 

where the square brackets denote molar concentra t ions , i.e 
numbers of moles per litre of water. 
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§89. Strong electrolytes 
A large number of substances are present in solution not as 

molecules but as charged const i tuents of molecules caUed ions; 
the positive ions are known as cations and the negative ions as 
anions. Such substances are said to be strong electrolytes. A 
substance which dissolves in the form of ions is said to dissociate 
in solution, and this phenomenon is called electrolytic dissociation. 

In solution in water , almost all salts are strong electrolytes, and 
so are some acids (such as H C l , H B r , H I and HNO3) and some 
bases (such as N a O H and K O H ) . In sahs the cation is the metal 
and the anion is the acid radical (e.g. N a C l - » Na'^ + CI"). Acids 
dissociate to form the cation H+ and the acid-radical anion 
( H N O a ^ H ^ + N O a " ) ; alkalis give the metal cation and the 
anion O H " , called hydroxyl ( N a O H Na+ + O H " ) . 

T h e phenomenon of electrolytic dissociation is observed in 
some other solvents also, but it appears most strongly in aqueous 
solutions. 

If two strong electrolytes are simultaneously dissolved in 
water , for instance N a C l and KBr , there is no reason to regard 
the solution as one of N a C l and KBr specifically; it contains only 
the separate ions K" ,̂ Na+, CI" and Br", and the same solution 
could jus t as well (or rather, with jus t as httle meaning) be called 
a solution of N a B r and KCl . 

In reactions be tween strong electrolytes in solution, only the 
separate ions actually take part , since there are no undissociated 
molecules in the solution. T h e heat of reaction be tween strong 
electrolytes therefore depends only on the ions which directly 
participate in the reaction, and not on which other ions are present 
in the solution (if the solution is weak, of course) . Let us consider , 
for example, the neutrahsat ion of strong acids with alkali. I t is 
inaccurate to write the neutrahsat ion reaction as , for example , 
NaOH4-HCl = N a C l + H a O ; in reality, only the H+ and O H " 
ions react , combining to form water: H ^ - f O H " = H20. This 
reaction is obviously the same for all strong acids and alkalis, 
whatever the metal and the acid radical. T h e heat of reaction is 
therefore likewise the same for the neutralisation of any strong 
acid by any strong alkali. T h e value of this heat for one mole of 
acid and one mole of alkali is 57 kJ: 

H + - h O H - = H 2 0 + 5 7 k J . 
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Let us next consider a saturated solution of any strong elec
trolyte whose solubiHty is low, for example silver chloride in 
water. By the definition of saturation this solution is in equiHb
rium with solid silver chloride. This equilibrium may be regarded 
as the chemical equiHbrium of the reaction 

Ag+ + C l - = AgCl , 

where Ag+ and C P are in the solution and AgCl in the solid 
state: the number of AgCl molecules which go into solution per 
unit t ime is equal to the number of molecules deposited from the 
solution by combination of ions per unit t ime. Since, on the 
other hand, the solution is weak (because the solubility of silver 
chloride is low), we can apply the law of mass action. H e r e , as 
explained previously, only the concentra t ions of the solutes need 
be included, and we find 

[Ag+][C1-] = K, 

where the square brackets again denote molar concentra t ions 
(numbers of moles per litre of water) . T h e constant Κ (which is, 
of course , a function of temperature) is called the solubility 
product for the electrolyte concerned. F o r example , for silver 
chloride at room temperature A: = 1 X ΙΟ'^^ (mole/l)^; for CaCOa, 
A: = 1 X 10-« (mole/1)^ 

Thus the product of the concentrat ions of anions and cations 
in a saturated solution of a strong electrolyte of low solubility is 
a constant . If no salt containing silver or chlorine ions, except 
silver chloride itself, is present in solution in water , the con
centrat ions [Ag"*"] and [CI"] are equal to the solubility Co of silver 
chloride. H e n c e it follows that 

Κ = Co'. 

N o w let a quanti ty of another chloride, of high solubility (such 
as NaCl ) , be added to a saturated solution of AgCl . T h e n some 
of the latter will be deposited as soHd from the solution, since the 
addition of N a C l raises the concentra t ion of chloride ions while 
that of silver ions remains unchanged; some of the AgCl must 
therefore be deposited in order that the product [Ag+][Cr] may 
remain constant . 
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§ 9 0 . Weak electrolytes 
As well as strong electrolytes, there are substances which 

dissociate in solution but do so only partly; in solutions of these 
substances there are not only ions but also neutral molecules. 
Such substances are called weak electrolytes. T h e majority of 
acids and bases , and some salts (such as HgCl2), are weak 
electrolytes in aqueous solution. 

T h e law of mass action is apphcable to weak solutions of weak 
electrolytes. Let us consider, for example, a solution of acetic 
acid (CH3COOH), which dissociates in water according to the 
equation 

H A c = H+-f A c " 

(the symbol A c denoting the acid radical CH3COO). Dissocia
tion continues until equilibrium is es tabhshed, when the ion 
concentrat ions satisfy the equation 

[Ac-] [H+]/ [HAc] = K. 

The constant Κ is called the dissociation constant. F o r instance, 
for acetic acid at room temperature Λ: = 2 X 10~^ mole/litre. 

A dissociation reaction is endothermic , i.e. it occurs with 
absorption of heat. As with aU endothermic react ions, its "y ie ld" 
increases with rising tempera ture , i.e. the dissociation constant 
increases. 

T h e dissociation constant is independent of the quanti ty of 
dissolved electrolyte (so long as the solution remains weak) and 
is a fundamental property of the electrolyte, but the degree of 
dissociation (i.e. the ratio of the number of dissociated molecules 
to the total number of electrolyte molecules) depends on the 
concentrat ion of the solution. 

Let a total of c moles of electrolyte be dissolved in a litre of 
water , and let the degree of dissociation be a. T h e n the number 
of dissociated moles is ca. If an electrolyte molecule dissociates 
into one anion and one cation (as in the example of acetic acid 
considered above) , then the concentrat ion of each is ca. T h e 
concentrat ion of undissociated molecules is c( l — a) . T h e law of 
mass action therefore gives 

a'cl{\-a) = K. 
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H e n c e we find the degree of dissociation in terms of the 
concentrat ion of the solution: 

^-K-hV{K' + 4Kc) ^ IK 
2c K + \/{K' + AKc)' 

This formula shows that, as the concentrat ion c decreases , the 
degree of dissociation increases , tending to unity at infinite dilu
tion (i.e. as c 0). Thus , the more dilute the solution, the more 
the electrolyte is dissociated. This naturally follows from the 
fact that a molecule dissociates under the action of water mole
cules, which are present everywhere , but for recombinat ion to 
occur two diff'erent ions must come together, and this occurs more 
rarely in more dilute solutions. 

Water is itself a very weak electrolyte. A very small fraction of 
its molecules are dissociated in accordance with the equation 

Η 2 θ = Η+ + Ο Η - . 

Since H 2 O is at the same time the solvent with respect to the 
ions H+ and O H " , the formula for the law of mass action need 
include, as we know, only the concentra t ions of these ions: 

[ H + ] [ O H - ] = K. 

For pure water at 25°C, 

K= 10-iMmole/litre)2. 

Since in pure water the concentrat ions of H^ and O H " ions are 
evidently equal, we find that each is 10"^ T h u s one Utre of water 
contains only 10"^ mole of H"^ ions (and the same quanti ty of 
O H - ) ; 1 mole of water (18 g) is dissociated only in ten million 
Htres. 

T h e decimal logarithm of the concentrat ion of H+ ions, with 
sign reversed, is called the p H : 

p H = - l o g i o [ H + ] . 

For pure water at 2 5 X the p H is 7-0; at 0°C it is 7-5 and at 6 0 X 
6-5. 
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When acids dissolve they release H+ ions. But the product of 
concentrat ions [H+][OH~] must remain constant and equal to 
10"!^ Some of the O H " ions must therefore combine with H+ 
ions to form neutral molecules of water . T h u s the concentra t ion 
[H+] is greater than its value in pure water (10"^), and the p H 
of an acid solution is consequent ly less than 7. Similarly, in 
solutions of alkalis (which release O H " ions) the p H is greater 
than 7. T h e p H of a solution is therefore a quanti tat ive measure 
of its degree of acidity or alkalinity. 

Solutions containing a weak acid (such as acetic acid Η Ac) and 
a salt of it which is a strong electrolyte (e.g. sodium aceta te , 
N a A c ) have interesting propert ies. T h e completely dissociated 
salt yields a large quanti ty of A c " ions in the solution. F r o m the 
equation of dissociation of the acid, 

[H+][Ac-] / [HAc] = K, 

we ñnd that the presence of excess A c " ions in the solution causes 
a decrease in the number of H+ ions, i.e. inhibits the dissociation 
of the acid. T h e concentrat ion [HAc] of undissociated acid 
molecules is therefore practically equal to the total concentrat ion 
of the acid (denoted by c j . T h e concentrat ion of A c " ions, which 
are almost entirely supplied by the salt, is practically equal to the 
salt concentrat ion (c,). T h u s [H+] = Kcjcs, and the p H of the 
solution is 

p H = -logio[H+] = -logioA: + logio(c,/c«). 

This depends only on the ratio of concentrat ions of the salt and 
the acid. Thus dilution of the solution, or the addition of small 
quantities of any other acids or alkalis, has practically no effect 
on the p H of the solution. A solution of this type whose p H 
remains constant is called a buffer solution, 

§91. Activation energy 
Hi ther to we have considered only the state of chemical 

equilibrium, leaving aside the question of reaction mechanisms 
and rates. T h e calculation of the number of collisions of mole
cules in §88 served only to derive the condit ions of equilibrium 
and, as already mentioned, may not correspond to the actual 
mechanism of the reaction. 
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Let us now consider the rate at which a reaction occurs . 
Individual molecules can react with one another when they 
colHde, but not all collisions bring about react ions: in reahty , 
usually only a very small fraction of all collisions result in 
reactions between molecules. T h e explanation of this is as 
follows. 

In a reaction, the a toms of the colliding molecules are rearranged 
in a certain manner. F o r simplicity, let us assume that the 
reaction consists of a transfer of one a tom from one molecule 
(A) to another molecule (B), T h e potential energy of this a tom 
depends on its position with respect to the two molecules. T h e 
form of this energy as a function of a coordinate χ along the " p a t h 
of t ransi t ion" of the a tom is represented diagrammatically by a 
curve of the kind shown in Fig. 112. This diagram is, of course , 
highly schematic , since in reality the potential energy depends 
on several parameters (coordinates) and not on only one. What is 
important is not the precise variation of the potential energy but 
simply the fact that it has two minima corresponding to posit ions 
of the a tom in each of the two molecules. These two positions are 
separated by a potential barrier. 

F I G . 112. 

A chemical reaction can occur only if the a tom which is to be 
transferred be tween two colliding molecules has sufficient energy 
to t raverse the barrier. In the majority of molecules , however , 
this a tom has an energy equal to or close to the corresponding 
minimum. T h e molecule can react , therefore, with the transition 
A - ^ B, only if it has excess energy equal to UQ- UA (see Fig. 112). 
T h e ratio of the number of such molecules in the gas to the num-
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ber which do not possess such energy is equal to the ratio of the 
Boltzmann factors (see §55): 

^-UolkT . ^-UAlkT = ^-{lo-UA)lkT^ 

T h e energy UQ — UA is called the activation energy of the reaction 
concerned, and usually referred to one mole of the substance by 
multiplying UQ—UA by Avogadro ' s number: NQ{UQ—UA) = E. 

Thus the number of molecules capable of reacting, and there
fore the reaction rate , are proportional to the activation factor 

This is the principal factor in the tempera ture dependence of the 
reaction rate , and we see that the reaction rate increases very 
rapidly with temperature . 

If the reaction rate is denoted by f, it follows from the above 
that 

l o g e i ; = constant —E/T̂ r, 

i.e. the logarithm of the reaction rate is a linear function of 1/Γ. 
T h e slope of the straight line representing this function gives the 
activation energy E. 

T h e activation energy may have very different values for differ
ent molecular processes . F o r the majority of observable react ions 
it lies in the range from 10 to 150 kJ. 

When the temperature changes from a value Γ to a slightly 
different value 7 - f ΔΤ, the change in the reaction rate is given by 
the formula 

logei^2 - l o g e ^ i = log^(i;2/i;i) 

Ε ^ Ε Ε 
R{T-^AT) RT RT^ 

For example, when £ : = 8 0 k J , 7 = 300°K, AT = 10°, we ñnd 
vjvi ~ 3. This is a typical increase in the reaction rate. F o r 
many kinds of reactions in gases and solutions, it is found that 
an increase of 10° in the temperature (in the range where the 
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reaction occurs at an appreciable rate) increases the reaction rate 
by a factor be tween two and four. 

The extent to which the reaction rate depends on the tempera
ture can be seen, for example, from the reaction 2 H I H2 + 1 2 , 
whose activation energy is 185 kJ. A t 200°C the reaction still 
hardly occurs at all: the dissociation of an appreciable quanti ty 
of H I would take hundreds of years . A t 500°C, the reaction is 
complete within seconds; yet even at this tempera ture only 
about one in 10^^ colHsions be tween H I molecules results in 
dissociation. 

T h e necessity for a sufficiently high energy of the molecules is 
the principal reason for the low efficiency of collisions in produc
ing reactions. It is indispensable that the necessary excess energy 
should be concentra ted on certain a toms or groups of a toms in 
the molecule; this fact also has a decisive influence in estabhshing 
the reaction rate. F o r reactions which involve complex molecules , 
there is also a geometrical factor: it is necessary that the react ive 
parts of colliding molecules should be in contact . 

Let us again consider Fig. 112. T h e difference UA—UB cor
responds to the difference of the internal energies of molecules 
A and B, i.e. the heat of reaction evolved in the exothermic 
reaction A Β or absorbed in the endothermic reverse reaction 
Β A. This difference is not directly related to the height of the 
potential barrier, i.e. there is no direct relation be tween the heat 
of reaction and the activation energy of the reaction. But there is 
a relation between the heat of reaction and the difference of the 
activation energies of the forward and reverse reactions. T h e 
diagram shows that the activation energies of the reactions 
A Β and Β A mc υ^ — UA and UQ — UB\ their difference is 
equal to the heat of reaction: 

{Ü,-ÖB)-{Ü,-UA)=UA-UB. 

As already mentioned in §88, react ions do not usually proceed 
exactly in accordance with the overall chemical equation: in 
reality, most chemical reactions have a more or less complex 
mechanism consisting of a number of simple e lementary pro
cesses , the intermediate stages of the reaction, which are often 
difficult to determine. T h e reaction as it were selects the quickest 
path. T h e intermediate stages of the reaction must , of course . 
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have the lowest possible activation energies; this is the funda
mental physical factor which determines the path of the react ion. 
T h e different stages may occur at very different rates. T h e rate 
of the overall process will evidently be determined mainly by 
the slowest of these intermediate stages, jus t as the speed of an 
assembly line can never be faster than the speed of the slowest 
operation. 

Decreas ing the activation energy of the intermediate stages of 
a reaction is the basis of most processes of catalysis, i.e. the 
acceleration of reactions by adding to the reaction mixture another 
substance called a catalyst. This acceleration may be very great; 
reactions which otherwise practically do not occur at all often 
take place rapidly when a catalyst is present . T h e function of the 
catalyst is to participate in intermediate reactions in some way, 
while being restored to its original form as a r e suh of the whole 
process . 

It should be emphasised that a catalyst can not displace the 
position of chemical equilibrium, which does not depend on how 
the reaction occurs . T h e only effect of the catalyst is on the rate at 
which equihbrium is established. 

§92. Molecularity of reactions 
All chemical reactions in gases or in weak solutions can be 

assigned to a number of types , depending on the number of 
molecules which must collide in order to bring about the reaction. 
H e r e , it must be emphasised, the true molecular processes which 
actually occur are meant. In the examples given below the 
reactions in fact occur in the way shown by the chemical equation. 
In most cases , however , this classiñcation of reactions relates 
to the individual elementary stages of a complex reaction 
mechanism. 

Monomolecular reactions are those in which the molecules of 
the original substance decompose into two or more par ts , for 
example the decomposit ion of ethyl bromide: 

CgHsBr-^ C2H4 + HBr . 

There is no need for molecules to coUide in order to bring about 
such reactions. T h u s , as the substance decomposes , the reaction 
rate decreases linearly with its concentrat ion. 
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In this sense reactions in weak solutions behave similarly 
when solvent molecules participate in addition to one molecule 
of solute, for example in the hydrolysis of cane sugar already 
mentioned above: 

cane sugar + HgO glucose 4- fructose. 

This reaction in fact involves two molecules , but since there 
are plenty of water molecules round every sugar molecule through
out the reaction, the change in the reaction rate is due solely to 
the change in the concentrat ion of dissolved sugar. 

React ions in which two molecules yield two or more molecules 
are said to be bimolecular; for example , the react ions 

H 2 + l 2 ^ 2 H I , 

N02 + C O ^ N O + C02 

are bimolecular in both directions. A collision be tween two 
molecules is necessary for such react ions to occur , and the rate 
is therefore proport ional to the product of concentra t ions of the 
reacting substances (or to the square of the concentra t ion, if the 
reaction involves two identical molecules). This type comprises 
the great majority of the e lementary processes which make up the 
mechanism of complex reactions. 

Finally, trimolecular react ions are those in which three mole
cules take part to give two or more o ther molecules. T h e s e are 
comparat ively few, because they can occur only if three mole
cules collide simultaneously, and such ternary collisions are , of 
course , much rarer than collisions be tween pairs of molecules. 

It is easy to determine the ratio of the numbers of ternary and 
binary collisions of molecules in a gas. W e can say that ternary 
collisions of a given molecule are those which it undergoes while 
at the same time in the vicinity of a third molecule. Let V denote 
the total volume occupied by the gas, and b the total volume of the 
gas molecules. It is evident that the volume within which a mole
cule must be situated in order to be considered as in the vicinity 
of some other molecule is of the order of ¿?, and the probabiHty 
that the molecule is in the vicinity of another molecule is therefore 
blV. T h e ratio of the numbers of ternary and binary colHsions is 

Pure Mathematical Physics



272 CHEMICAL REACTIONS [XI 

consequently also of the order of blV. This is a small quanti ty; 
for example, for air under standard conditions it is about 10~^. 

T h e number of quaternary collisions is less than that of ternary 
collisions in the same ratio. Because of the extreme rarity of such 
collisions, chemical reactions of higher orders (quadrimolecular, 
etc.) do not occur in Na tu re . 

Some reactions which would appear to be bimolecular are in 
fact trimolecular. These are reactions in which two particles 
combine into one , for example 

H + H - ^ H2. 

If an H2 molecule were formed by a collision of two Η a toms, it 
would immediately dissociate again; the two colliding a toms can 
always move apart again. A stable H2 molecule must have a 
negative internal energy. Thus two hydrogen a toms can form a 
stable molecule only when a further particle is present to receive 
the excess energy liberated in the formation of the molecule. 
This means that the reaction in question actually occurs only in a 
collision between three particles. 

It is interesting to note that even reactions which are clearly 
monomolecular sometimes behave as if they were bimolecular. 
In order to decompose , a molecule must have suificient energy 
for its parts to overcome the potential barrier as they separate . 
An "ac t iva t ed" molecule of this kind has a definite " l i fe t ime"; 
in a complex molecule, for example, the excess energy must be 
concentra ted at the point where it is required for the decomposi
tion. Act ivated molecules are formed as a resuU of collisions 
between molecules in their thermal motion. In a sufficiently 
rarefied gas, where colhsions are comparat ively infrequent, 
activated molecules decompose more rapidly than fresh ones are 
formed. U n d e r these condit ions, the reaction rate is mainly deter
mined by the rate of the activation process , which requires colli
sions be tween molecules and is therefore a bimolecular process . 

§93. Chain reactions 
A characterist ic feature of the mechanism of the majority of 

reactions is that fragments of molecules appear as intermediate 
products . These are individual a toms or groups of a toms, known 
2iS free radicals, which do not exist in a stable state. 
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For example, in the decomposi t ion of heated nitrous oxide gas 
(for which the formal equation is 2N2O = 2N2 + O2), the N2O 
molecules decompose thus: N2O N2 + O, forming free a toms 
of oxygen, which then react with further molecules of nitrous 
oxide: O + N2O N2 + O2. 

In this instance the intermediate particles (O atoms) disappear 
after the two component processes have occurred. T h e r e are 
many react ions, however , in which active intermediate products 
react continuously, and thus act as a kind of catalyst. 

This very important type of reaction mechanism may be 
illustrated by the formation of hydrogen bromide in a mixture of 
hydrogen and bromine vapour when the mixture is exposed to the 
action of light. This reaction in fact does not occur by collision 
of H2 and Br2 molecules, as would correspond to the chemical 
equation H2 + Br2 = 2HBr . Its t rue mechanism is as follows. 
Unde r the action of light, Br2 molecules dissociate into two a toms: 

Br2 Br 4-Br. 

This is called chain initiation, and the bromine a toms formed act 
as active centres. T h e s e a toms, on colhding with H2 molecules , 
react thus: 

B r - h H 2 - > H B r + H . 

T h e resulting Η a toms in turn react with Br2 molecules: 

H + B r 2 - ^ H B r + B r , 

again forming bromine a toms, which react with H2 molecules , 
and so on. A cont inuous chain of successive react ions resul ts , in 
which the Br a toms act as a kind of catalyst , being restored un
changed after the formation of two Η Br molecules. This is called 
a chain reaction. T h e principles of the theory of chain react ions 
were worked out by N . N . Semenov and C. N . Hinshelwood. 

W e see that, if active centres are formed in some way, the 
chain reaction will then proceed spontaneously, and could go to 
completion, one might think, without further external interaction. 
In reality, however , chain termination must also be taken into 
account. One active c e n t r e - a bromine a tom in the above 
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e x a m p l e - c a n cause the reaction of hundreds of thousands of 
hydrogen and bromine molecules, but it must eventuaUy be lost, 
thus stopping the further progress of the chain reaction. This 
can occur, for example, by the recombinat ion of two Br a toms 
to form a Brg molecule. It has been mentioned in §92, however , 
that such a combination of two a toms to form a stable molecule 
can occur only by a ternary collision. This mechanism of chain 
termination therefore becomes important only at high pressures , 
when ternary colhsions in the gas are fairly frequent. 

Another mechanism of chain termination consists in the loss 
of active centres when they strike the walls of the reaction vessel. 
This is of importance at low pressures , when the active centres 
can move quite easily through the gas. 

On the other hand, there exist react ions in which chain 
branching occurs . F o r example , the combust ion of hydrogen in 
a detonating mixture of hydrogen and oxygen occurs (at high 
temperatures) essentially as follows. By an external interaction 
(e.g. passage of a spark) a chain is initiated: 

Η2 + θ 2 - > 2 0 H . 

T h e resulting active centres ( O H radicals) react with H2 molecules 
to give water: 

O H + H 2 - ^ H 2 O + H . 

T h e Η a toms thus formed then react as follows: 

Η + θ 2 ^ O H + O , 

0 + H 2 - ^ O H + H . 

These reactions not only yield water but also increase the 
number of active centres H , O and O H (unlike the reaction of 
H B r formation, where the number of free Η and Br a toms did 
not increase). 

If the increase in the number of active centres by chain branch
ing outweighs the termination of chains , then this number grows 
very rapidly (in geometric progression), and the reaction is 
thereby accelerated into an explosion. 
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This chain mechanism of explosion has the feature that it can 
in principle develop even at constant temperature . Ano the r 
important explosion mechanism is the thermal mechanism, 
which results from the marked tempera ture dependence of the 
reaction rate. When heat is rapidly evolved in an exothermic 
reaction, the rate of removal of heat may be insufficient, and 
consequent ly the reaction mixture will be heated, thus leading to 
a progressive spontaneous accelerat ion of the reaction. 

Pure Mathematical Physics



C H A P T E R X I I 

S U R F A C E P H E N O M E N A 

§94. Surface tension 
So far we have discussed thermal propert ies and phenomena 

which occur throughout volumes and aflFect the whole mass of a 
body. T h e existence of free surfaces of bodies brings about the 
existence of a separate class of surface phenomena or capillarity 
effects. 

Strictly speaking, any body is in an external medium, such as the 
a tmosphere, and not in a vacuum. T h u s we should speak not merely 
of the surfaces of bodies but of interfaces be tween two media. 

In surface phenomena , only those molecules which are actually 
at the surfaces of bodies are involved. If the bodies are not very 
small, the number of such molecules is very small in comparison 
with the total number of molecules in the bodies. F o r this reason, 
surface phenomena are usually of minor importance , but they 
become significant in small bodies. 

T h e molecules which are in a thin layer adjoining the surface 
are in conditions different from those within the body. T h e latter 
are surrounded by similar molecules on all sides, whereas the 
molecules near the surface have similar molecules on one side 
only. This has the result that the energy of the molecules in the 
surface layer is different from that of the molecules within the 
body. T h e difference between the energy of all the molecules 
(in both media) which are near the surface and the energy which 
they would have within the bodies is called the surface energy. 

It is evident that the surface energy is proport ional to the area 
5 of the interface: 

^ s u r f = OCS. 

T h e coefficient a depends on the nature and state of the media in 
contact ; it is called the surface tension. 

2 7 6 
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As we know from mechanics , forces always act so as to bring 
a body to a state of minimum energy. In particular, the surface 
energy tends to take its least possible value. H e n c e it follows that 
the coefficient a is always posit ive, since otherwise the media in 
contact could not exist separately; their interface area would 
tend to increase without limit, i.e. the two media would tend to 
mix. 

Converse ly , since the surface tension is posit ive, the interface 
between two media must always tend to contract . This is the 
reason why droplets of liquid (and gas bubbles) tend to be 
spherical: for a given volume, the sphere is the figure with the 
least area. This tendency is opposed by the force of gravity, but 
for small droplets its effect is slight and their shape is almost 
spherical. In conditions of weightlessness this will be the shape 
of any free mass of liquid. Such condit ions may be simulated in 
a well-known experiment with a spherical drop of oil floating 
within a mixture of alcohol and water having the same specific 
gravity. 

F I G . 1 1 3 . 

T h e surface-tension force is shown by the following simple 
example. Let us imagine a film of liquid supported on a wire 
frame of which one side (of length /) is movable (Fig. 113). 
Because the surface tends to contract , the wire is subject to a 
force which can be directly measured on the movable part of the 
frame. By the general laws of mechanics , this force is the deriv
ative of the energy (in this case , of the surface energy) with 
respect to the coordinate χ in the direction in which the force 
acts : 

F = - dU.^Jdx = - a dSjdx. 
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But the area of the film is 5 = /JC, and therefore 

F = -al. 

This is the force on a segment / of the frame due to the surface-
tension force on one side of the film; since the film has two sides, 
the force on the segment / is twice this value. T h e minus sign 
shows that this force is directed into the surface of the film. 

T h u s the line bounding the surface of the body (or any part of 
this surface) is subject to forces perpendicular to the line and 
tangential to the surface, directed into the surface. T h e force 
per unit length is equal to the surface tension a. 

T h e dimensions of a follow from its definition, and may be put 
in various forms: energy per unit area, or force per unit length, 

[a] = erg/cm^ = dyn/cm. 

It is clear from the above that, in stating the value of the surface 
tension, it is necessary to state which two media are in contact . 
T h e term ' ' surface tens ion" is often applied to a liquid (without 
specifying any other medium) to denote the surface tension 
between the liquid and its vapour. This quantity always decreases 
with increasing tempera ture and becomes zero at the critical 
point, where the difference be tween hquid and vapour ceases to 
exist. 

T h e following list gives the surface tension (in erg/cm^) be tween 
various liquids and air: 

Water (20°C) 73 Mercury (20°C) 480 
Ethyl ether (20°C) 17 Gold (1130°C) 1100 
Benzene (20°C) 29 

Liquid helium has a very low surface tension at an interface with 
its vapour, only 0-35 erg/cm^ (near absolute zero). 

A surface tension also exists , of course , at the surfaces of 
sohds , but here its effect is very slight under ordinary condit ions: 
the comparatively weak surface forces cannot change the shape 
of a solid body. A direct measurement of the surface tension of 
solids is therefore very difficult, and there are no rehable data 
as to its values. 
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T h e surface tension of an anisotropic body (a crystal) must be 
different on different faces, since in general the a toms are differ
ently arranged on different faces. F o r this reason, if a crystal 
could freely change shape under the action of external forces, 
it would not become spherical as an isotropic body (a hquid) 
would, where the surface tension is everywhere the same. It 
can be shown that the equilibrium shape of a crystal under these 
conditions is a very curious one , consisting of a relatively small 
number of plane faces, which, however , do not meet at angles 
but are joined by rounded regions. 

This phenomenon may be observed, for example , on prolonged 
heating (at about 750°C) of spheres of rock salt cut from single 
crystals. T h e high temperature assists the a toms in " c r eep ing" 
from one point on the surface to another , and in consequence the 
sphere is conver ted into a ñgure of the kind described. 

§95. Adsorption 
Many surface phenomena come under the heading of adsorp

tion, which consists in the adhesion of substances on the surfaces 
of sohds and hquids (the latter being then called adsorbents). 
Adsorpt ion can take place from gases or liquids, and a solute 
may be adsorbed from solution. F o r example , many gases are 
adsorbed on the surface of carbon, silica gel, or the majority of 
metals; carbon adsorbs various organic compounds from solution. 
T h e degree of adsorption is described by the surface concentra
tion, which is the quanti ty of the substance per unit area of the 
surface of the adsorbent . 

Adsorpt ion phenomena are widely found in N a t u r e , and play 
an important part in technology. In order to adsorb a large 
quantity of a substance, we must evidently use substances which 
have the maximum area for a given mass , such as porous or 
ñnely powdered materials. T o describe this proper ty of adsor
bents , we use the specific area, which is the area per unit mass of 
the substance. In good adsorbents , such as speciaUy prepared 
porous carbons , it reaches hundreds of square metres per gram. 
Such large values of the specific area are not suφr i s ing if we 
consider how rapidly the surface area increases when a body is 
permeated by pores or is finely crushed. F o r example , 1 cm^ of 
material in spheres of radius r cm will have a total area of 3/r cm^, 
and when r ~ 10~^ this amounts to hundreds of square metres . 
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A very important property of adsorption is the change which it 
causes in the surface tension at the interface between media. 
Usual ly the surface of a hquid is concerned. Adsorpt ion always 
reduces the surface tension, since otherwise adsorpt ion would 
not occur. He re again there is a tendency to reduce the surface 
energy: this reduction can be achieved not only by decreasing 
the surface area but also by changing the physical propert ies of 
the surface. Because of their eflFect on the surface tension, sub
stances which can be absorbed (on the surface of a given liquid) 
are said to be surface-active. On water , for example, various 
soaps are surface-active. 

T h e total quantity of a substance which can be absorbed on 
the surface of a hquid is very small. T h u s even small quantit ies 
of surface-active substances accumulating on the surface of a 
liquid may considerably affect its surface tension. T h e surface 
tension of a liquid is very sensitive to impurities: for example , 
even very small quantities of soap can reduce the surface tension 
of water by a factor of more than three. 

Adsorbed monomolecular films on the surfaces of liquids are 
a very curious physical phenomenon, forming as it were a two-

T h e concentrat ion of adsorbed gas depends (at a given tem
perature) on the gas pressure over the surface of the adsorbent . 
This dependence is shown by a curve , called an adsorption iso
therm, of the form shown in Fig. 114. T h e surface concentra t ion 
at first increases rapidly with pressure . A s the pressure cont inues 
to rise, the concentrat ion increases more slowly, and finally 
reaches a limit or saturation value. Exper iment shows that the 
saturation of adsorption corresponds to a more or less dense 
occupat ion of the adsorbent surface by a single layer of adsorbed 
molecules (called a monomolecular layer). 
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dimensional state of matter , in which the molecules are distributed 
over a surface in two dimensions and not over a volume in three 
dimensions. In this state there can exist various phases , " g a s " , 
" h q u i d " and " s o h d " , exactly analogous to three-dimensional 
phases. 

In a " g a s e o u s " film the adsorbed molecules have a compara
tively rarefied distribution on the surface of the hquid and can 
move freely on it. In " l iqu id" and " s o h d " films the molecules are 
close together, either retaining some freedom of relative motion 
(so that a hquid film can "f low") , or so firmly held together that 
the film behaves as a solid. Liquid and solid films may be aniso
tropic, forming two-dimensional analogues of liquid and solid 
crystals; in the hquid film we have a regular orientation of mole
cules on the surface of the adsorbent , and in the solid film a type 
of two-dimensional crystal lattice with a regular configuration of 
molecules. It is noteworthy that such anisotropic films may occur 
at an interface between two isotropic media, a liquid and a gas. 

These eff'ects are very well illustrated by the monomolecular 
films formed on a water surface by insoluble complex organic 
acids, alcohols etc. , whose molecules form long hydrocarbon 
chains with - C O O H , - O H , etc. , groups at one end. T h e s e 
groups are strongly at t racted by the water molecules and, as it 
were , dissolve in the surface layer of the water , but cannot carry 
the whole molecule into the liquid; part of the molecule remains 
above the surface. T h u s a liquid or sohd film forms a kind of 
forest of closely packed molecules with their ends immersed in 
water. 

T h e surface tension a when the water surface is covered with 
a film is less than its value for the clean surface. T h e difference 
α — «0 can be measured directly from the force acting on a barrier 
floating freely on the surface of the water and separating the film 
from the clean surface. T h e film exerts a force a (into the film) 
per unit length of this barrier, and there is an opposi te force 
exerted by the clean surface. Since «o > the result is that the 
film repels the barrier with a force 

Δα = a^ — a 

per unit length. This force may be regarded as the pressure of 
the film. At a given tempera ture , it is a definite function of the 
area S of the film (formed by a given quanti ty of the adsorbed 
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substance) , jus t as the pressure of an ordinary body is a function 
of its volume. 

F o r a gaseous , rarefied film (with η molecules in the area S) , 
this relation is given by 

Δα - nkTiS, 

which is similar to the equation of state of an ideal gas 
(p = NkTjV). When the film is compressed (i.e. when its area 
S decreases) , there occurs at a certain value of Δα a phase transi
tion to a cont inuous liquid or solid film. On the curve of Δα as 
a function of 5 this transition corresponds to a horizontal section, 
which is entirely similar to that for the ordinary transition be tween 
vapour and liquid on the isotherms which show the relation 
between the pressure ρ and the volume V (§70). 

§96. Angle of contact 
A t the edge of a liquid surface in a vessel we have three media 

in contact : the sohd wall (medium 1 in Fig. 115), the liquid (2) 
and the gas (3). Let us consider the capillary effects which occur 
at such a boundary. 

F I G . 1 1 5 . 

Three forces of surface tension act on the line along which all 
three media are in contact ; this line intersects the plane of the 
diagram at O. Each force is directed tangentially inwards along 
the interface between the two media, as shown by the ar rows in 
the diagram. T h e magnitudes of the forces per unit length of 
the line of contact are equal to the respect ive surface tensions 
« 1 2 , « 1 3 , « 2 3 · T h e angle between the surface of the liquid and the 
solid wall will be denoted by θ and is called the angle of contact. 
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T h e surface of the hquid takes a form such that the resuhant 
of the three forces «12, «13, «23 has no component along the wall 
of the vessel (the component perpendicular to the wall is balanced 
by the reaction of the wall). T h u s the condition of equilibrium of 
the liquid at the wall is 

« 1 3 = « 1 2 + « 2 3 C O S Θ, 

whence 

COSÖ = (α:ΐ3-α:ΐ2)/α23· 

W e see that the angle of contact depends only on the nature of 
the three media in contact (through the surface tensions at their 
interfaces); it does not depend on the shape of the vessel or on the 
force of gravity acting on the bodies. It must be remembered , 
however , that the surface tensions, and therefore the angle of 
contact , are very sensitive to the state of cleanliness of the 
interfaces. 

If « 1 3 > «12, i.e. if the surface tension at the interface be tween 
the solid wall and the gas is greater than that at the interface 
between the wall and the liquid, then cos θ > 0 and the angle 
θ is acute . In other words , the edge of the hquid is raised, and its 
surface or meniscus is concave (Fig. 115a). T h e hquid is then 
said to wet the solid surface. If a drop of such a liquid is placed 
on the surface of the solid, it " f lows" to some extent over the 
surface (Fig. 116a). 

If, on the other hand, «13 < «12, then cos Ö < 0 and θ is ob tuse ; 
the edge of the liquid is depressed and its meniscus is convex 
(Fig. 115b). In this case we say that the hquid does not wet the 
solid. F o r example , the angle of contact of mercury on glass is 
about 150°, and that of water on paraffin wax is about 105°. 
Drops of such hquids, when placed on the solid surface, appear 
to contract so as to reduce the area of contact with the surface 
(Fig. 116b). 

F I G . 1 1 6 . 
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I « 1 3 - « 1 2 1 ^ « 2 3 

must hold. If «12, «13, «23 are taken to be the surface tensions for 
each pair of media alone, in the absence of the third medium, this 
inequality may certainly prove to be violated. In reality, we must 
remember , the third substance may be adsorbed on the interface 
between the other two and thus lower the surface tension, so 
that the resulting values of a are such as to satisfy the foregoing 
condition. 

T h e concepts of wetting and non-wetting in the sense explained 
above must be distinguished from that of complete wetting, 
which refers to the condensat ion of a vapour on the surface of a 
solid. As we know, the condensat ion of a vapour to a liquid 
is brought about by the action of the van der Waals forces of 
attraction between molecules. T h e s e forces, however , can be 
exerted on a molecule in the vapour not only by similar mole
cules but also by the molecules of a solid. Let us suppose that the 
attraction forces from the solid are stronger than those in the 
liquid itself. In such a case , the presence of the solid surface will 
clearly bring about a partial condensat ion of the vapour even in 
conditions where the vapour is unsaturated and would therefore 
otherwise be stable. A thin film of liquid forms on the surface of 
the solid. T h e thickness of such a film cannot be great, of course ; 
its order of magnitude is determined by the range of action of 
the van der Waals forces and may be from 10"^ to 10"^ cm. As 
the vapour approaches saturation the film becomes thicker. This 
effect is called complete wetting of the solid by the liquid. F o r 
example, carbon tetrachloride (CCI4) completely wets many 
surfaces, including that of glass. 

[The difference between this phenomenon and adsorpt ion 
should be emphasised: here we are discussing a very thin but 
still " m a c r o s c o p i c " layer of liquid, whereas an adsorbed film 
consists of individual molecules distributed over the surface.] 

T h e edge of a liquid which completely wets the walls of a vessel 
passes continuously into the film on the wall. T h u s in this case 

Since the cosine of an angle cannot exceed unity in absolute 
magnitude, it is seen from the formula derived above for cos θ 
that in any actual case of stable equilibrium between the liquid 
and the wall the condition 
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there is no finite angle of contact . W e may say that complete 
wetting corresponds to zero angle of contact . A drop of such a 
Hquid placed on the surface will spread completely over it. 

More complex types of wetting are in principle possible, 
depending on the nature of the van der Waals forces exerted 
by the solid. F o r instance, a case is possible where the vapour 
condenses into a liquid on the solid surface but the thickness of 
the resulting film can not exceed a certain limiting value. If the 
surface is already covered with such a film, a further d rop of 
Hquid placed on it will not spread completely, but wiH remain 
isolated, though highly flattened, with a very small but finite 
angle of contact . This seems to occur for water on clean glass; 
the maximum film thickness is about 10"^ cm, and the angle of 
contact is probably less than one degree. 

§97. Capillary forces 
It has several t imes been mentioned that, in a state of equi

librium, the pressures of bodies in contact must be equal. In 
reality this s tatement is true only in so far as capillary effects 
are neglected. When the surface tension is taken into account , 
the pressures in adjoining media are in general different. 

Let us consider, for example , a drop of liquid in air. T h e 
tendency of the drop surface to decrease causes a contract ion of 
the drop and therefore an increase in its internal pressure . T h e 
pressure of the liquid in the drop therefore exceeds the pressure 
of the surrounding air. T h e difference be tween them is called the 
surface pressure and will be denoted by /?surf-

T o calculate this quanti ty, we note that the work done by the 
surface forces in reducing the surface area of the drop by dS is 
equal to the corresponding decrease a dS in the surface energy. 
This work can also be writ ten as PsurfdV, where dV is the change 
in the volume of the d rop ; thus 

adS = PsurfdV. 

F o r a spherical drop of radius r, S = 4nr' and V = 4nr^/3; 
substitution in the above equation then gives the following 
expression for the surface pressure: 

Psurf = 2a/ r . 
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This formula applies also, of course , to a bubble of gas in a 
hquid. T h e higher pressure always occurs in the medium towards 
which the interface is concave. When r oo, the surface pressure 
tends to zero. This is in accordance with the fact that for a plane 
interface the pressures in the adjoining media must be the same; 
it is evident that the tendency of the surface to contract will not 
lead to any force into either medium in this case. 

W e may also derive a formula for the surface pressure in a 
cylindrical mass of liquid. In this case S = 2nrh, V=Trr^h (where 
r is the radius and h the height of the cylinder), and substitution 
in the equation PsmfdV = adS gives 

PsuT{=o¿lr. 

These simple formulae enable us to solve a number of problems 
relating to capillarity effects. 

m 
μ-_---

X 

0) (b) 

F I G . 1 1 7 . 

Let us imagine two parallel flat plates (shown in cross-section 
in Fig. 117) between which is a thin layer of liquid. T h e lateral 
surface of the liquid is in contact with air. If the angle of contact 
is acute , the meniscus of the liquid is concave and the pressure 
within the liquid is less than the air pressure ; the a tmospher ic 
pressure acting on the plates will therefore tend to bring them 
together and they appear to at tract each other; if the angle of 
contact is obtuse , the meniscus is convex and the layer of hquid 
appears to push the plates apart. When the space be tween the 
plates is sufficiently narrow, any small section of the meniscus 
may be regarded as part of a cylindrical surface of some radius r. 
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A simple construct ion (Fig. 117b) shows that x = lr cos where 
X is the distance between the plates. T h e pressure in the liquid is 
less by Psurf = ct/r = (2a/x) cos Ö, where a is the surface tension 
between the liquid and the air. T h e force of at tract ion F be tween 
the plates is found by multiplying this quanti ty by the area of 
contact S be tween the liquid and each plate: 

F = {laSix) cos Θ. 

W e see that this force is inversely proport ional to the distance 
between the plates. When the distance is small, the force may be 
very large; for example, plates separated by a film of water one 
micron thick are at tracted together by a pressure of about 
1-5 atm. 

Let us next consider the well-known capillary rise (or fall) of 
a liquid in a narrow tube immersed in the liquid. When the 
meniscus is concave (acute angle of contact) the pressure of the 
liquid in the tube is less than that of the adjacent air by an 
amount /7surf. T h e atmospheric pressure on the surface of the 
liquid in the vessel therefore causes the level of the liquid in the 
tube to rise until the weight of the column of liquid balances 
the extra pressure: Psurf = Pgh, where ρ is the density of the liquid. 
T h e surface of the meniscus in a nar row tube may be regarded as 
part of a sphere whose radius r is related to the radius a of the 
tube by a = r cos Θ. Then Psurf = 2«//- = {laja) cos θ and the 
height to which the hquid rises is 

h = lalgpr 
= (lalgpa) cos Θ. 

For a convex meniscus , this formula gives the depth to which 
the liquid sinks. 

T h e surface tension and the density of the liquid appear in the 
above formula in the combinat ion alpg. T h e quanti ty V ( 2 a / p g ) 
has the dimensions of length and is called the capillary constant. 
It plays an important part in all phenomena which occur under 
the combined action of surface-tension forces and gravity. T h e 
capillary constant of water at 20°C is 0-39 cm. 

Various effects of capillary forces are the basis of methods 
for measuring surface tension. F o r example , the size of drops of 
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liquid flowing slowly from a narrow tube is determined by the 
equilibrium between the weight of the drop and the surface 
tension around its " n e c k " ; thus a measurement of the weight 
of the drop (by counting the number of drops formed by a given 
quantity of liquid) enables us to determine a. Another method 
is based on measurement of the surface pressure within a gas 
bubble of given radius; this is effected by measuring the additional 
pressure necessary to expel a bubble of air from the end of a tube 
immersed in the hquid. 

§98. Vapour pressure over a curved surface 
T h e influence of capillary forces causes some changes also in 

the propert ies of equilibrium between a liquid and its saturated 
vapour. It has been stated above that the saturated vapour 
pressure is a definite function of temperature . In reahty, this 
pressure depends also on the shape of the hquid surface above 
which the vapour is situated. T h e dependence is admittedly very 
slight, and can be of importance only for small bodies (e.g. 
droplets of liquid). 

T h e nature and amount of this dependence are easily deter
mined by again considering the capillary rise (or fall) of a liquid 
and supposing that the space above the hquid in the vessel and 
in the tube is filled with saturated vapour. Since the gas pressure 
decreases with increasing height, it will evidently be smaller 
above a liquid which has risen (and larger above a liquid which 
has fallen) than above the flat surface of the hquid in the vessel. 
Comparing this with the shape of the meniscus in the tube in 
the two cases , we conclude that the saturated vapour pressure 
above a concave liquid surface is less (and above a convex 
surface greater) than above a flat surface. T h e similarity of this 
argument to the derivation of Raoul t ' s law in §81 should be 
noted. 

If h is the height of the capillary rise, the decrease in the 
saturated vapour pressure is Ap = py^pgh. W e have seen in §97 
that h = lalpirg, where pi is the density of the liquid and r the 
radius of the sphere of which the meniscus forms part . T h u s 
we have 

^ PI 
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The decrease in the saturated vapour pressure above a concave 
surface causes what is called capillary condensation, the deposi
tion of a liquid in a porous body from a vapour which under 
ordinary condit ions would not be saturated. If the liquid wets 
the body concerned, concave menisci of liquid are formed in the 
pores (which act as very fine capillaries), and the vapour may then 
be supersaturated even at a comparat ively low pressure . 

When the hquid surface is convex , the same formula for Δρ 
gives the amount by which the vapour pressure exceeds its value 
over a flat surface. W e see that the saturated vapour pressure 
above a drop of liquid increases with decreasing radius of the 
drop. 

Let us imagine a vapour containing a large number of liquid 
droplets of various sizes. It may happen that the vapour is super
saturated with respect to the larger droplets but unsatura ted with 
respect to the smaller ones . Then the liquid which evapora tes 
from the smaller drops will condense on the larger ones , which 
as it were " c o n s u m e " the small drops . 

§99. The nature of superheating and supercooling 
T h e most important consequence of the dependence of the 

saturated vapour pressure on the size of a drop is that it gives 
an explanation of supersaturat ion of a vapour—the continued 
existence of the gaseous state under conditions such that the 
substance should become liquid. 

A supersaturated vapour over the surface of the hquid will, 
of course , condense immediately, but if the vapour is not in 
contact with the liquid the condensat ion is impeded by the fact 
that it must begin with formation of small droplets in the vapour . 
A vapour supersaturated with respect to a flat liquid surface 
may still be unsaturated with respect to such droplets , which 
are then unstable and evapora te again as soon as they are 
formed. Only if a liquid drop happens to be formed in the vapour 
which is so large that the vapour is also supersaturated with respect 
to the drop will such a drop continue to exist and the vapour 
continue to condense on it; the drop wih act as a nucleus 
of the new phase. Spontaneous formation of such nuclei in 
completely pure vapour can occur only by random thermal 
fluctuations, and this is in general a very unlikely occurrence . 
Its probability decreases for increasing values of the "cr i t i ca l" 
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radius of the drop, i.e. the minimum radius which gives stabihty. 
As the degree of supersaturat ion increases, the "cr i t i ca l" radius 
becomes smaller and the formation of nuclei becomes easier. 
When this quantity reaches values of the order of molecular 
dimensions, the creation of special nuclei is essentially unneces 
sary and further supersaturat ion of the vapour is impossible. 

T h e condensat ion of a supersaturated vapour is assisted by 
the presence of a solid surface in contact with it which is wet ted 
by the liquid in question. Small droplets which are deposited 
on such a surface spread somewhat and their surfaces become 
less curved. Thus such drops can easily become centres of further 
condensat ion. Condensat ion occurs with particular ease on a 
surface which is completely wet ted by the liquid, since the 
drops disperse over the whole of such a surface. 

U n d e r ordinary conditions the vapour is not completely pure , 
and various small dust particles present in it act as centres of 
condensat ion, by forming solid surfaces which are wet ted by the 
liquid. Thus , in order to achieve a considerable degree of super-
saturation, a careful removal of all contamination from the 
vapour is necessary. 

Charged particles (ions) strongly at tract the vapour molecules , 
and consequently small droplets immediately form around them 
and act as centres for further condensat ion; thus charged particles 
create particularly favourable conditions for the condensat ion of 
the vapour. This phenomenon is, in particular, the basis of the 
cloud chamber used for the observat ion of the paths of fast 
ionising atomic or nuclear particles. 

W e have given a detailed discussion of the reasons for the 
occurrence of the metastable state of supersaturated (super
cooled) vapour. These reasons are in fact general and account 
also for the " d e l a y " in other phase transit ions. T h e formation 
of a new phase within a previously existing one must begin with 
the formation of small inclusions or nuclei of the new phase. 
F o r example, the conversion of a liquid into a vapour must begin 
with the appearance in the liquid of small bubbles of vapour ; 
the solidification of a liquid, with the appearance in it of crystal 
nuclei, and so on. 

T h e additional surface energy at the boundary of such a nucleus 
makes its formation energeticahy unfavourable unless it is suffi
ciently large. H e r e we have a competi t ion between two opposing 
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factors. T h e formation of a new interface be tween two phases 
involves the a b s o φ t i o n of the surface energy, but when the sub
stance enters a new phase there is a gain in volume energy. T h e 
latter quanti ty increases with increasing size of the nucleus 
more rapidly than the former quanti ty, and ultimately outweighs 
this. W e may say that the formation of a nucleus of a new phase 
requires the traversing of a "potent ia l bar r ie r" due to the surface 
energy, and this is possible only for a sufficiently large nucleus. 

The re is one phase transition which in this respect appears to 
form an exception to the general rule, namely the melting of 
crystals . When crystals are heated in an ordinary manner , super
heating is never observed. This , however , is simply because the 
surface of any crystal is completely wet ted by the liquid formed 
when it melts. T h u s the liquid droplets formed on the surface 
of the crystal spread over it, and surface tension does not act to 
prevent melting. 

Superheating of crystals can occur if the crystal is artificially 
heated from the inside instead of from the outside. F o r instance, 
when a current is passed through a single-crystal rod of tin 
with intensive air cooling of the exterior, the tempera ture within 
the rod is higher than that on its surface, and the interior of the 
crystal can then be superheated by one or two degrees before 
ordinary melting begins at its surface. 

§ 100. Colloidal solutions 
Sometimes a substance which does not dissolve in a given 

liquid can be distributed in it in the form of very fine part icles, 
although these still contain a very large number of molecules. 
In this case the finely divided or dispersed substance is called 
a disperse phase, and the medium in which it is distributed is 
called the dispersion medium. If the size of the particles is of 
the order of 10"^ to 10"^ cm, such a mixture is called a suspension 
or emulsion according as the particles are of a sohd or a liquid; 
for example, milk is an emulsion of fat in water . 

When the particles are even smaller (10"^ to 10"^ cm, or 10 
to 10^ Á) , the mixture is called a colloidal solution or sol. T h e 
characteristic property of these solutions is the size of the 
particles of the disperse phase rather than the number of mole
cules in each particle. F o r example , in a colloidal solution of gold 
in water , each particle is of size 100-500 Á and contains millions 
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of gold a toms, but in solutions of such complex subs tances as 
proteins each colloid particle may contain only one molecule. 

T h e dispersion medium may be either a liquid or a gas. F o r 
example, colloidal solutions in air (aerosols) may be smokes , 
mists or fogs. T h e most important colloidal solutions, however , 
are those in liquids, in particular those in water (hydrosols). 
F o r example, the majority of substances concerned in the 
constitution of plants and animals are present in them as hquid 
colloidal solutions. 

Many kinds of substance are able to form sols: many organic 
compounds with large molecules (proteins, s tarch, gelatine, 
etc.), silicic acids, aluminium hydroxide, etc. Sols of some metals 
can also be obtained, for example of gold in water. 

Because of the high degree of dispersion of the disperse phase , 
the total surface area of its particles is extremely large, and 
surface phenomena therefore have a very important effect on the 
propert ies of colloidal solutions. 

Since the surface tension tends to reduce the area of the inter
face, the particles of the disperse phase have a tendency to 
combine and be precipitated from the solution as a dense mass . 
This tendency is counteracted by the forces of electrical repul
sion: the particles of the disperse phase in a colloidal solution 
are always electrically charged, and all the charges are of the 
same sign (which may be either positive or negative). Only this 
fact prevents the particles from coalescing and being precipitated. 

Colloidal particles are charged either because of the electrolytic 
dissociation of their molecules or by adsorption of ions from the 
surrounding fluid. When an electrolyte is added to a colloidal 
solution, the ions of the electrolyte may cancel the charge on the 
colloidal particles and render them electrically neutral . This 
brings about the precipitation or coagulation of the colloidal 
solution. Coagulation of colloids may also be effected by other 
means , for instance by heating. 

Colloidal solutions may be divided into two groups as regards 
stability. Some colloidal solutions are a stable state of mat ter 
and can be precipitated only with difficulty. These are called 
lyophilic colloids, and include hydrosols of proteins, gelatine, 
silicic acids, and other substances . When a lyophihc colloidal 
solution is coagulated it often becomes a jelly-like mass called 
a gel. This contains not only the substance from the disperse 
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phase but also a considerable quanti ty of the solvent (water, 
etc.). A gel is a kind of irregular network of solute particles, 
enclosing solvent molecules. A typical feature of the conversion 
of a lyophilic sol into a gel is that it is reversible: under appro
priate conditions a gel may absorb a sufficient quanti ty of solvent 
to become a sol again. 

Colloidal solutions of the other group form a metastable state 
of mat ter and are very easily precipitated. These lyophobic 
colloids include, for example, colloidal solutions of metals in 
water. T h e coagulation of lyophobic colloids is accompanied 
by the formation of a dense precipitate, and is an irreversible 
process ; the precipitate can not be so easily conver ted into a 
solution again. 
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M E C H A N I C A L P R O P E R T I E S O F 
S O L I D S 

§101. Extension 
T h e work done on a liquid or gas depends only on the change 

in its volume, and not on the change in shape of the vessel 
containing it. Liquids resist change in volume but not change 
in shape. This property is the reason for Pascals law in liquids, 
which states that the pressure transmitted by a liquid is the same 
in all directions: if, for instance, a hquid is compressed by a 
piston, the same pressure will be exerted by the liquid on every 
wall of the vessel. T h e pressure force acting on the liquid and 
transmitted by the hquid is always at right angles to the walls: 
a force tangential to the surface, and not capable of being com
pensated because a liquid offers no resistance to a change of shape, 
can not exist in equilibrium conditions. 

Solids, on the other hand, resist both change in volume and 
change in shape; they resist, therefore, any deformation. Work 
must be done even in order to change the shape alone of a solid, 
without altering its volume. W e may say that the internal energy 
of a solid depends on its shape as well as on its volume. In con
sequence, Pascal ' s law does not apply to solids: the pressure 
transmitted by a solid is different in different directions. T h e 
pressures which occur in a solid when it is deformed are called 
elastic stresses. U n h k e the pressure in a liquid, the elastic-stress 
force in a solid may be in any direction relative to the area on 
which it acts . 

T h e simplest type of deformation of a solid is extension. This 
occurs in a thin rod (Fig. 118a) of which one end is fixed, when a 
force F tending to stretch the rod is applied to the other end. (If 
the force F is in the opposi te direction we have a compression.) 
It may be noted that fixing in a wall is, by the law of action and 

2 9 4 
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reaction, equivalent to applying to the fixed end a force equal and 
opposite to the force acting on the free end (Fig. 118b). 

T h e elastic stresses in the rod are determined by the value F / 5 
of the extending force per unit area of the cross-section S of 
the rod; let this value be p. T h e s tresses are clearly constant 
along the length of the rod, and thus the same stretching stress 
ρ is exerted on each element of length of the rod by the adjoining 
parts of the rod (Fig. 118b). It is therefore clear that each unit 

y//////////A 
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length of the rod undergoes the same extension, and the total 
increase δ/ in the length of the rod is proport ional to this length. 
Thus the relative elongation 

λ = δ///ο 

(where /o is the length of the rod before deformation) is indepen
dent of the length of the rod, and is clearly a measure of the degree 
of deformation undergone by each part of the rod. 

Because of the high strength of solids, the deformations which 
they undergo when subjected to external forces are usually small. 
Tha t is, the relative changes in size of solid bodies are small, and 
in the case of the extension described above the relative elonga
tion is small. Such deformations may be assumed to be propor
tional to the stresses which cause them, and therefore to the 
magnitude of the external forces apphed. This is called Hooke's 
law. 

For extension, H o o k e ' s law implies that the relative elongation 
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λ is proportional to the tensile stress p. This relation is usually 
written 

λ = ρΐΕ, 

where the coefficient Ε is a property of the material and is called 
Young's modulus. T h e relative elongation λ is evidently a 
dimensionless quanti ty, and the modulus Ε therefore has the 
dimensions of /?, i.e. those of pressure. 

As examples , the values of Young 's modulus (in millions of 
bars) for a number of materials are as follows: 

Iridium 5-2 Quar tz 0-73 
Steel 2-0-2· 1 Lead 0-16 
Copper 1-3 I c e ( - 2 ° C ) 0-03 

Young ' s modulus , however , does not completely describe the 
propert ies of a body with respect to deformation (its elastic pro
perties). This is clear even for an extension. T h e reason is that 
longitudinal stretching of a rod involves a decrease in its t rans
verse dimensions: the rod becomes thinner at the same time as 
its length increases. T h e value of Young ' s modulus enables us to 
calculate the relative elongation of the rod (for a given stress), 
but does not suffice to determine the t ransverse contract ion. 

T h e relative decrease in the t ransverse dimensions of the rod 
is also proportional to the tensile stress /?, and therefore to the 
relative extension λ. T h e ratio of the relative t ransverse contrac
tion of the rod to its relative elongation is a quantity characterist ic 
of any given material and is called Poisson's ratio, denoted by σ. 
T h u s the relative t ransverse contract ion (e.g. the relative 
decrease in the diameter of a stretched wire) is 

σ-λ = σρ/Ε. 

We shall see below that Poisson 's ratio cannot exceed h 
F o r most materials its value is in the range from 0-25 to 0-5. 
T h e value σ = 0 is reached in porous materials (such as cork) 
whose t ransverse dimensions are unaffected by stretching. 

Thus the elastic propert ies of a soUd are described by two 
quantities, Ε and σ. It should be emphasised, however , that we 
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have tacitly assumed the solid to be isotropic (the materials 
concerned are usually polycrystalhne). T h e deformation of an 
anisotropic body (a single crystal) depends not only on the 
position of the external forces with respect to the body but also 
on the position of the crystallographic axes within the body. T h e 
elastic propert ies of crystals are of course described by a larger 
number of quantities than for isotropic bodies . T h e number 
increases with decreasing symmetry of the crystal , from 3 for 
cubic crystals to 21 for crystals of the trichnic system. 

T h e work done on a body undergoing deformation is stored in 
the body in the form of elastic energy. Let us calculate this 
energy for a s tretched rod. T h e work done by the tensile force 
F to increase the length of the rod by an infinitesimal amount 
d{lo\) = kdk is 

dU = Flodk, 

and this is also the increment of elastic energy. Substituting 
F = Sp, p = Ek, and noting that the product SIQ is the volume V 
of the rod, we obtain 

SEUodX = VEXdX = VEdiWl 

H e n c e it follows that, if the relative elongation of the rod changes 
from zero to some value λ, the work done is iVEX^. T h u s the 
elastic energy per unit volume of the deformed rod is 

U = iEk\ 

which is proport ional to the square of the deformation. This can 
also be put in the form 

U = ikp = ρηΙΕ. 

An extension is a uniform deformation, i.e. one in which each 
volume element in the body is deformed in the same way. T h e 
bending of a thin rod is closely related to a simple extension 
(or compression) , but is not a uniform deformation. I ts nature 
is easily ascertained by imagining a rod bent into a circle. Before 
being bent the rod is straight, and so the length of each "fibre" 
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in it from one end to the other is the same. After the bending 
this is no longer true. T h e length of each fibre is 2πΓ, where r is 
the radius of the circle which it forms, and this radius is less along 
the inner side of the rod than along the outer side. I t is therefore 
clear that the inner par t of the rod is compressed and the outer 
part is stretched. Since no lateral force is apphed to the rod 
surface, the elastic stresses in the rod act only lengthwise, and 
this means that , in bending, each volume element is subjected 
to a simple extension or compress ion, though this is not the same 
for different e lements : the par ts nearer to the convex side of the 
bent rod are s tretched, and those nearer the concave side are 
compressed. 

§ 102. Uniform compression 
T h e formulae for a simple extension are easily generalised 

to any uniform deformations. 
Le t a sohd block in the form of a rectangular parallelepiped 

be stretched (or compressed) by forces acting on all sides and 
uniformly distributed over each face (Fig. 119). These forces 

TTTT 
F I G . 1 1 9 . 

create elastic stresses in the body , which are in general different 
in three mutually p e φ e n d i c u l a r directions (along the three edges 
of the parallelepiped); let these stresses be p^, Py, p^, with 
positive signs for tensile stresses and negative signs for compres
sive stresses. T h e relative changes in length in these directions 
(positive in extension and negative in compression) will be 
denoted by λ^, λ̂ ,̂ λ̂ .̂ 
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Let us consider this deformation as the result of three succes
sive simple extensions along the three axes . F o r example , when 
stretched by the stress the body is elongated in the χ direction 
and shortened in the t ransverse y and ζ direct ions, with 

= ρ JE, \ y = \ , = - σ λ ^ = -apJE. 

Summation of the results of three such deformations gives 

^Px-O-JPy-^Pz) ^Py-O-iPx-^Pz) _Pz-(τφχ-^ Py) 

^x Ε ^ £ ' Ε ' 

Next , let us find the change in the volume of the body as a 
result of the deformation. T h e volume of a parallelepiped with 
edges Ij,, ly, 4 is Κ = IJyl;,, Taking logari thms, we find 

logeF= logelx + lOge / y - h logelz 

and on differentiating 

8V_8l^ 8ly 84 

V " Ix^ ly^ lz' 

T h e three terms in this sum are the relative elongations along the 
respect ive axes . H e n c e 

δ Κ / Κ = λ ^ + λ^ + λ „ 

i.e. the relative change in volume is equal to the sum of the relative 
elongations in three mutually p e φ e n d i c u l a r directions. 

Substi tution of the expressions found above for λχ, Xy, gives 

8V 1-2σ 
-y = —γ-ÍPx-^Py-^Pz)' 

Let us now consider some important particular cases of uniform 
deformation. If a body is subject to tensile (or compressive) 
stresses which are uniform in all direct ions, i.e. if the elastic 
stresses in it are the same in all directions iPx = Py = Pz), then 
the relative change in each dimension of the body is the same 
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(λ^ = = = λ). Such a deformation is called a uniform 
extension (or compression) ; in this case 

λ = ( 1 - 2 σ ) ρ / Ε , 

and the relative change in volume is 

δνΐν=3λ = ρΐΚ, 

where the coefficient 

Λ: = £ : / 3 ( 1 - 2 σ ) 

is called the modulus of uniform compression or bulk modulus. 
Its reciprocal UK is clearly equal to the compressibili ty 

1 dV 
dp 

discussed in §58. T h u s the formula obtained relates the ordinary 
compressibility of a solid to the values of Young ' s modulus and 
Poisson 's ratio. 

T h e elastic energy stored in the body (per unit volume) in 
uniform cqmpression is 

U = έ ( λ , ρ , + kypy -f λ ,ρ J = f λρ = iKk' = ipVK. 

T h e quantity Κ must always be positive, i.e. the volume of a 
body must be increased by extension and decreased by compres
sion. It has been mentioned in §70 that bodies with the opposi te 
dependence of the volume on the pressure would be absolutely 
unstable and therefore cannot exist in Na tu re . [This is also seen 
from the above formula for the elastic energy: if < 0, this 
energy would be negative, and since a mechanical sys tem tends 
towards the state of least potential energy, such a body would 
spontaneously undergo an unlimited deformation.] 

Since Κ is positive, it follows that 1 — 2σ- > 0, or 

(T<h 

i.e. Poisson 's ratio cannot exceed i . 
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Let us now consider the compression of a block held by lateral 
walls in such a way that its t ransverse dimensions may be 
regarded as constant (Fig. 120); this process is called unilateral 
compression. 

F I G . 120. 

Let the direction of compress ion be along the χ axis. T h e reac
tion of the walls which prevents a lateral expansion of the block 
gives rise to t ransverse stresses Py and p^ in it. T h e magnitude of 
these is determined by the condition that the dimensions of 
the block in the y and ζ directions must remain unchanged 
(ky = = 0), and from symmetry we must have py = p^. F r o m 
the equation 

X _Py-^iPx^Pz) _P.v(l - 0 · ) - _ 
^y- Ε ~ Ε ~^ 

we find that the t ransverse stresses are related to the compress ive 
pressure by 

Py = Pz = Χ-σ' 

T h e longitudinal compression of the block is given by 

_Px-o-iPy^Pz) ^ \ -σ-2σ' 
Ε Ε{\-σ)^ 

§103. Shear 
Under uniform compression, the shape of a body remains the 

same, and only its volume changes. Deformat ions of the opposi te 
kind are also of importance, where only the shape of the body 
changes and not its volume. T h e s e are described as shear 
deformations. 
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Since the volume is constant , we have 

δV|V=k^-l·λy-l·k,= 0, 

and hence 

Substituting P y + = —Px in the formula 

. ^Px-(T(Py-^p,) 
kx ^ 

we find that the relative elongation (or shortening) along any 
edge of a block is related to the stress in that direction by the 
formula 

, _ 1 + σ 
^Χ— £- Ρχ· 

This relation involves the quanti ty ^ / ( l -f σ ) ; a quanti ty equal to 
one-half of this is called the shear modulus (or modulus of 
rigidity) and denoted by G: 

σ = £ / 2 ( 1 + σ ) . 

A shear deformation is, however , most simply brought about 
by applying to the block forces which are tangential, not perpen
dicular, to its surface. Let the lower face of the block be held 
fixed, and forces be applied in the plane of the upper face; 
s tresses in this direction are often called shearing stresses. 
Under the action of these forces the parallelepiped becomes 
oblique, as shown in Fig. 121. T h e angle β (cahed the angle of 
shear) is small for smah deformations (the only ones considered 
here). In a first approximation we can assume that the height of 
the parallelepiped is unchanged, and therefore that the volume 
is unchanged, giving a shear deformation. It can be shown that 
the angle β is related to the shearing force ρ (per unit area) by 

ß = plG. 

Pure Mathematical Physics



§103] SHEAR 303 

F I G . 121. 

Like the modulus of uniform compress ion, the shear modulus 
must be posit ive, since the elastic energy that is stored in a body 
subjected to a shear deformation is positive only in that case. 
H e n c e it follows that we must have 1 + σ > 0, i.e. σ- > — 1. 

Using also the inequality σ < \ derived in §102, we can say 
that the values of Poisson 's ratio for all bodies must lie in the 
range 

- 1 < σ < i 

These are the only conditions which follow from the general 
requirements of mechanical stability of solids. T h u s in principle 
bodies could exist with negative values of σ. A rod of such a 
material should become wider in a simple extension, and not 
narrower as was assumed in §101 . N o bodies having such 
propert ies are known to exist in N a t u r e , however , so that 
Poisson 's factor in practice varies only be tween 0 and i . Values 
close to \ occur in substances such as rubber , which change 
their shape considerably more easily than their volume: their 
moduli of compress ion are large in comparison with their shear 
moduli. 

T h e shearing of a rectangular block discussed above is a uni
form deformation. T h e torsion of a rod is a pure shear but one 
which is not uniform. This occurs when one end of a rod is fixed 
and the other end is twisted. Different cross-sect ions of the rod 
are turned through different angles relative to the fixed base . 
Since neither the height nor the cross-sectional area of the rod is 
changed, its volume also remains constant . 

It is easy to see how the shear deformation in torsion is 
distributed over the volume of the rod. Let us consider a rod of 
circular cross-section with radius R, and let its upper end turn 
through some angle φ relative to the lower end (Fig. 122). A n y 
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F I G . 1 2 2 . 

generator AB of the cyhndrical surface of the rod then moves to 
the obhque p o s i t i o n / ί ^ ' . Since the distance BB' = Κφ, the smah 
angle of shear β on the surface of the rod is 

jS tan jS = ΚφΙΙ, 

where / is the length of the rod. Applying the same reasoning to 
a cylindrical surface of radius r < i?, we ñnd that it is hkewise 
sheared, but through an angle 

ßr = rφ|l, 

which is less than the angle of shear β ai the surface of the rod. 
Thus in torsion the different elements of the rod undergo different 
degrees of shearing, which become smaller as the axis of the rod 
is approached. 

T h e deformation in a twisted rod gives rise to elastic forces 
which counterbalance the apphed forces. Since the elements 
of the rod can turn about its axis, the equilibrium condition is, 
as we know from mechanics , that the elastic and applied torques 
are equal. H e n c e it follows that the magnitude of the torsional 
deformation must be determined by the applied torque about the 
rod axis (also called the torsional torque). F o r small deforma
tions (when the angle of shear β is smah), Hooke ' s law is valid 
and the angle of twist of the rod is proportional to the torsional 
torque. 
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T h e relation between the angle of twist and the torsional torque 
can be used to measure the latter. This method of measuring 
torques is widely used in physics in what is called a torsion 
balance. H e r e the " r o d " usually consists of a fine quartz thread 
of thickness from 1 to 100 μ, having high sensitivity and strength; 
the angle of twist of the thread is measured from the movement of 
a light spot reflected from a mirror fixed to the thread. Extremely 
small torques can be measured by means of such a balance. An 
intrinsic hmit of sensitivity is imposed only by the spontaneous 
random vibrations of the balance due to unavoidable thermal 
fluctuations (similar to Brownian motion). A s an example , the 
amplitude of the fluctuation torsional oscillations of a balance 
with a quar tz thread 10 cm long and 1 μ thick is only a fraction 
of a minute of arc at room temperature . 

§104. Plasticity 
The re is a fundamental difference be tween compress ion (or 

extension) and shear deformations, which may be explained 
as follows. Let us consider a body undergoing shear, for example 
a cube of some material placed in a rigid container in the form 
of an oblique parallelepiped of equal volume. As a result of the 
shear, the body will contain some stored elastic energy. 

It is easily seen that the configuration of the a toms in the de
formed cube is not energetically advantageous . In other words , 
their configuration does not correspond to stable equilibrium 
(for a given shape of the body). F o r let us imagine that the 
container is filled with the material of the cube in molten form. 
By allowing this to solidify we obtain a body for which the shape 
of the container is natural and the shape of the cube is unnatural . 
T h e new configuration of the a toms is evidently one of lower 
energy, since it does not possess the shear energy. 

W e see that a shear deformation is essentially unstable, since 
the a toms can be arranged within the boundaries of the deformed 
body in such a way that the energy of the body is decreased. 

This conclusion clearly applies only to shear and not to uni
form compression. Unde r compress ion, the elastic energy results 
from the change in volume of the body, and therefore can not be 
eHminated by any movement of the a toms within a fixed volume. 

If a shear deformation of a body were to be accompanied by a 
change in the configuration of a toms such as to eliminate the 
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elastic energy, then the body would retain its different shape 
when the external forces were removed, and would not rever t 
to its original shape. Such deformations which remain when the 
external forces cease to act are called plastic deformations. 

It is found that plastic deformations do not occur for s t resses 
below a certain value, and the deformation disappears when the 
external forces cease to act. Such deformations are said to be 
elastic, and the whole of the discussion in §§101-3 refers only 
to these. 

T h e value of the stress for any given body above which a 
plastic deformation occurs is cahed the elastic limit. F o r smaller 
s t resses , the body returns to its original state when the load is 
removed; for larger s t resses , residual plastic deformations 
remain in the body after removal of the load. 

T h e value of the elastic limit depends not only on the substance 
but also to a considerable extent on the mode of preparat ion of 
the sample, its previous t reatment , the presence of impurities 
etc. F o r example , the elastic limit of single crystals of aluminium 
is only about 4kgf/cm2, but that of commercial aluminium is 
lOOOkgf/cm^. T h e elastic limit of heat- treated carbon steel 
reaches 6500 kgf/cm^. 

T h e elastic limit is very small in comparison with the shear 
modulus, and the hmiting value of the deformation beyond which 
plasticity occurs is in general very smah. F o r example , the shear 
modulus of aluminium is 2-5 x 10^ kgf/cm^. This means , for 
example , that single crystals of aluminium are elastic only up to 
relative deformations λ = 4/(2-5 x 10^) ~ 10"^ Steel is elastic 
up to λ ~ 10-2. 

Plastic deformation itself affects the elastic limit of a body: 
when a body undergoes a plastic deformation, its elastic limit 
is raised. This is called hardening. F o r example , the elastic 
limit of a single crystal of zinc is so small that it can easily 
be bent with the fingers, but it is not so easily straightened 
again, since the bending increases the elastic limit. T h e phenome
non of hardening is, in particular, the basis of the change in 
propert ies of a metal by the process of cold working, which 
consists in plasticahy deforming it in some way. 

Owing to hardening, a body subject to stresses which exceed 
the elastic limit does not break. It undergoes a plastic deformation 
which increases until the resulting changes cause the elastic 
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limit to become equal to the s tresses caused by the external 
forces. We may say that the elastic limit is equal to the stress 
which caused the last preceding plastic deformation of the body. 

Figure 123 shows a diagram of the relation be tween the s t resses 
ρ acting in the body and the magnitude λ of the deformation. 

Β 

—Á 11 

F I G . 1 2 3 . 

If the Stress is less than the elastic limit p^, the deformation is 
elastic and obeys H o o k e ' s law (more or less), i.e. λ is pro
portional to p. This relation is shown in the diagram by the 
straight line OA. 

When the stress becomes greater than p^, a plastic deforma
tion of the body occurs , and as the stress increases the relation 
be tween λ and ρ is as shown by the curve AB. Let us suppose 
that, having reached a point A' on this curve , we then decrease p. 
T h e value of p = Po' corresponding to A' is also the elastic 
limit acquired by the body through hardening as the load is 
increased. T h u s , when ρ decreases , there will be no further 
plastic deformation, and the variation of λ is shown by the 
straight line AO', which is parallel to the elastic part AO of the 
line OB. When the stress becomes zero , there remains some 
deformation λρΐ, which is a plastic deformation. T h e total de
formation at the point A' can be wri t ten as the sum of plastic 
and elastic par ts , λρ, = OO' and Xei = O'a. 

If the stress is again increased, the same straight line O'A' is 
t raversed until the value po' is reached. On passing the threshold 
ρ J we move from the Hne O' A' io curve A' Β and the plastic 
deformation is increased, the elastic limit being thereby further 
raised. 

With increasing plastic deformation the elastic limit does not , 
however , increase indefinitely: there is a maximum value of the 
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elastic limit which cannot be exceeded. This is called the yield 
point. Under a stress of this amount , the deformation of the body 
increases continuously and it begins to flow like a liquid. By 
applying high pressures it is possible, for example , to cause a metal 
to flow in a je t from an aper ture in the cyhnder of a hydraulic press . 

It is clear that stresses exceeding the yield point can never 
occur in a body for any deformation (except, of course , in uniform 
compression) . 

T h e yield point may sometimes not be reached, since the 
body may fracture much sooner. In order to observe the yield 
phenomenon, it is best to use such deformations as unilateral 
compress ion or torsion. Simple stretching, on the o ther hand, 
easily causes fracture. 

T h e presence of small, frequently microscopic, cracks in a 
body plays an important part in fracture. These cracks may be 
either on the surface of the body or within it, for example slight 
gaps between the grains of a polycrystalline body. Such cracks 
act as levers to cause a considerable concentrat ion of the external 
forces applied to the body: it is comparat ively easy for the elastic 
stresses at the sharp end of a crack to reach values sufficient for 
further rupture of atomic bonds and lengthening of the crack, 
ultimately leading to complete fracture of the body. T h e impor
tance of the state of the surface of the body with regard to fracture 
is clearly shown by an experiment with a rock-salt crystal : if the 
crystal is immersed in water , the salt dissolves from its surface, the 
cracks present on the surface are ehminated, and the crystal under 
water is considerably more difficult to break than a crystal in air. 

Plastic deformation near the ends of cracks may blunt their 
points and thus decrease to some extent the concentrat ion of 
elastic stresses near them. In this sense plasticity aids the 
resistance of a body to fracture, as is shown by the tempera ture 
dependence of britt leness in metals. F o r example , steel, which is 
difficult to break at ordinary tempera tures , becomes brittle at 
low temperatures . This effect is largely due to decreasing plasticity 
at low tempera tures , which will be further discussed in § 106. 

§105. Defects in crystals 
T h e very fact that the plastic propert ies of a body depend 

considerably on its previous t reatment , the presence of impurities, 
etc. , indicates that these propert ies are closely related to features 
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of the crystal s tructure of actual bodies which distinguish them 
from ideal bodies. 

Depar tu res from the ideal crystal s t ructure are called defects. 
T h e simplest type, which may be called point defects, consist in 
the absence of an atom from a lattice point (a free vacancy) or 
the replacement of the " c o r r e c t " a tom at a lattice point by a 
different (impurity) a tom, the entry of an extra a tom between 
lattice points , and so on. T h e depar ture from the regular s t ructure 
of the lattice extends over a dis tance of the order of several 
lattice periods around such a point. 

T h e most important defects as regards the mechanical proper
ties of solids are , however , of another kind, which may be called 
line defects, since the depar ture from the regular s t ructure of the 
lattice is concentra ted near certain lines. T h e s e are dislocations. 

T h e dislocation shown in Fig. 124 may be regarded as a lattice 
defect caused by the presence in the lattice of an ext ra crystal 
half-plane inserted between two " regu la r " planes (layers of 

F I G . 1 2 4 . 

atoms). T h e line of the dislocation (which in this case is called 
an edge dislocation) is a straight line perpendicular to the plane 
of the diagram, shown by the symbol _L; the " e x t r a " layer of 
a toms hes above this symbol. T h e dislocation may also be 
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F I G . 125. 

Another type of dislocation may be visualised as the result 
of " cu t t i ng" the lattice along a half-plane and then displacing 
the parts of the lattice on either side of the cut by one lattice 
period along the edge of the cut (Fig. 126). T h e edge of the cut 
is then called a screw dislocation and is shown by the broken 
line in Fig. 126. T h e presence of such a dislocation conver ts 

F I G . 126. 

regarded as the result of displacing the upper part of the crystal 
shown diagrammatically in Fig. 125a by one lattice period (Fig. 
125b). 
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the crystal plane in the lattice into a helicoidal surface, like a 
spiral staircase without the steps. 

In an edge dislocation the displacement is perpendicular to 
the dislocation line, but in a screw dislocation it is parallel to 
\this line. Any intermediate case be tween these two extremes is 
possible. T h e dislocation lines need not be straight: they may be 
curves or even closed loops. 

There are various methods of directly observing dislocations. 
Fo r example, in t ransparent crystals this can be done by creating 
supersaturated solid solutions of certain substances . T h e impurity 
a toms tend to be deposited as colloidal particles, which grow 
mainly at the places where the basic lattice structure is per
turbed; thus the colloidal particles of impurities are concentra ted 
along dislocation hues and render them visible. Another method 
is based on the etching of the crystal surface by suitable reagents . 
The surface is more easily at tacked at points where the crystal 
s tructure is perturbed. This leads to the formation of visible pits 
at points where the dislocation lines reach the surface of the 
crystal. 

Screw dislocations often play a decisive part in the process of 
growth of crystals from a liquid or a supersaturated vapour. 

It has been shown in §99 how the formation of a new phase 
within the original phase must begin with nucleation. A similar 
situation must occur in the growth of a crystal . T h e formation 
of a new layer of a toms on a perfectly regular crystal surface 
cannot begin simply with the deposition of individual a toms on 
the surface: such a toms, having neighbours on one side only, 
would be under conditions which would be energetically very 
unfavourable, and would not remain on the surface. A stable 
" n u c l e u s " for a new layer of a toms on the surface of the crystal 
must contain immediately a sufficient number of a toms, and the 
chance occurrence of such nuclei may be comparat ively rare. If, 
however , the edge of a screw dislocation appears on the surface 
of the crystal, it provides a ready-made step (one atomic layer 
in height) to which new atoms can easily at tach themselves , and 
no nuclei are therefore necessary. T h e rate of a t tachment of new 
atoms is approximately the same all along the edge of the step. 
T h e crystal therefore grows spirally, as shown diagrammatically 
in Figs. 127a-d. At any time there is a free step on the surface 
of the crystal , which can therefore grow without limit. T h e rate 
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(a) (b) 

F I G . 1 2 7 . 

of growth is very much higher than that of a process depending 
on nucieation. 

§ 106. The nature of plasticity 
G r o u p s of parallel lines can often be observed on the surface 

of a single crystal undergoing a plastic shear deformation. T h e s e 
lines are the t races of the intersection of the surface of the body 
with the slip planes along which some parts of the crystal slide 
as a whole relative to o ther adjoining parts . T h u s the plastic 
deformation is non-uniform: large displacements in shear occur 
only along planes at a comparat ively large distance apart , while 
the parts of the crystal which he be tween these planes undergo 
almost no deformation. Fig. 128 is a diagram of the deformation 
of a body as a result of slipping of this kind. 

T h e configuration of the slip planes is closely related to the 
structure of the crystal lattice. In any crystal , slipping occurs 
almost entirely along certain planes; for example, in the N a C l 
crystal these are (110) planes, while in metal crystals with face-
centred cubic lattices they are (111) planes. 
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What is the mechanism whereby one part of a crystal shps 
relative to another? If this were to take place simultaneously over 
the whole slip plane, very large s tresses would be necessary. 

F I G . 1 2 8 . 

T h e change from one equilibrium conñgurat ion of a toms to 
another (say, from that shown in Fig. 125a to that in Fig. 125d) 
would have to occur by means of a large elastic deformation in 
which the relative displacements (in the region near the slip 
plane) would reach values λ ~ 1. This would require s t resses 
of the order of the shear modulus G. 

In reality, the elastic limits of actual bodies are usually 10^ 
to 10^ times less than their shear moduli , and so relatively small 
s tresses are necessary in effecting a shear. This is possible 
because slip actually takes place by the movement of dislocations 
in crystals. 

T h e simplest form of this mechanism is indicated by the 
sequence in Figs. 125 a-d. If the crystal contains an edge disloca
tion (passing through a point A and at right angles to the front 
face of the crystal), the movement of this dislocation in the slip 
plane from left to right through the body causes a displacement 
of the upper part of the crystal relative to the lower part by one 
lattice period. T h e movement of the dislocation involves only 
a relatively slight reconstruct ion of the lattice, which affects only 
the a toms near a single line. This process may be compared to 
the movement of a wrinkle in a carpet : the wrinkle moves more 
easily than the whole carpet , but the effect of moving the wrinkle 
from one end of the carpet to the o ther is to shift the whole 
carpet a certain distance. 

Thus the plasticity of a solid depends on the presence of 
dislocations in it and on the possibility of their free movement . 
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This movement may, however , be retarded by various obstacles , 
such as impurity a toms dissolved in the lattice or small solid 
inclusions in the body. Dislocations are also slowed down by 
intersecting one another , and by the grain boundar ies in a poly-
crystalhne body. At the same t ime, the interaction of dislocations 
with one another and with other defects gives rise to new disloca
tions. These processes are very important , since they support 
the development of a plastic deformation; otherwise , the defor
mation would cease as soon as all the dislocations existing in 
the body had been "u t ihsed" . 

T h e number of dislocations in a body is described by the 
dislocation density, which is the number of dislocation lines 
intersecting a unit area within the body. This number varies 
widely, from 10^—lO^cm"^ in the most perfect pure single 
crystals to 10^^—lO^^cm"^ in heavily deformed (cold-worked) 
metals. 

It is clear from the above discussion that pure single crystals 
will have the lowest strength (i.e. the lowest elastic limit), since 
the dislocation density in them is comparat ively low, and so there 
is practicaUy no interference between the dislocations in their 
motion. Hardening of the material can be achieved by dissolving 
impurities in it or depositing microscopic solid inclusions, or 
by reducing the grain size. F o r example, the strength of iron is 
increased (in various kinds of steel) by dissolving in it carbon 
atoms or microscopic inclusions of iron carbide which are 
deposited in the process of solidification. 

Plastic deformation itself damages the crystal lattice, in
creasing the number of defects in crystals and thereby imped
ing the further movement of dislocations. This is the reason for 
the phenomenon of hardening by deformation, including the 
hardening of metals by cold working (work-hardening). 

T h e hardening achieved by plastic deformation is not main
tained for an indefinite t ime, however . T h e most stable state of 
a body is the undisturbed ideal crystal , which is the state having 
the least energy. T h u s per turbed crystals exhibit what is called 
recrystallisation. T h e structural defects are " h e a l e d " and the 
large grains in a polycrystalline body increase in size at the 
expense of the smaller ones , resulting in a system which is less 
defective and therefore of lower strength. Recrystall isation 
occurs more rapidly at high tempera tures , and especially rapidly 
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at temperatures fairly near the melting point (for example , in 
the annealing of metals). A t low tempera tures there is practically 
no recrystallisation. T h e effect of recrystalhsat ion is gradually 
to eliminate the hardening, and if the body is subject to a s teady 
load it will slowly flow. 

T h e tempera ture also has a marked effect on the movement 
of dislocations. Since this movement involves the overcoming 
of potential barriers by the a toms (which change their con
figuration near the moving dislocation line), it is a process of the 
activation type (cf. §91), and therefore is rapidly s topped by 
lowering the tempera ture , thus decreasing the plasticity of the 
body. 

T h e methods described above for increasing the strength of 
a material are based on the creation of obstacles to the move
ment of dislocations. T h e opposi te means of hardening is also 
possible, namely to produce a single crystal which contains 
no dislocations at all. Such a crystal should in principle have the 
maximum possible elastic limit: its plastic deformation could be 
brought about only by simultaneous slipping along entire planes, 
which, as already mentioned, would require the apphcat ion of 
extremely large stresses. 

This ideal state is approached by what are called whiskers. 
These are extremely thin thread-like crystals with thicknesses of 
the order of microns. They are formed both by metals and by non-
metals , and can be obtained in various ways : by precipitation of 
slightly supersaturated vapours of pure metals at appropriate tem
peratures in an inert gas medium, by slow precipitation of salts from 
solutions, and so on. In many cases such crystals appear to grow 
round individual screw dislocations in the manner described in 
§ 105. T h e dislocation along the axis of the whisker does not affect 
its mechanical propert ies when it is s t re tched, and the crystal 
behaves practically as an ideal one. 

It is clear from the above discussion that all these plasticity 
propert ies relate only to crystalline bodies. Amorphous bodies , 
such as glass, are not able to undergo plastic deformation, and are 
said to be brittle. Thei r inelastic behaviour consists of either 
fracture or a slow flow under the prolonged action of forces, in 
accordance with the fact that amorphous bodies are actually 
liquids of very high viscosity. 
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§107. Friction of solids 
T h e shding of a sohd body on the surface of another body is 

always accompanied by the conversion of its kinetic energy into 
heat, and in consequence the motion is gradually retarded. This 
phenomenon can be described from the purely mechanical point 
of view as being due to a certain force which impedes the mot
ion, called a frictional force. Physically, friction is the result of 
complex processes which occur on surfaces which rub together. 

Exper iment shows that the friction be tween solid bodies usually 
obeys certain simple laws. It is found that the total frictional 
force Ffr acting be tween moving bodies is proport ional to the force 
Ν which presses the bodies together, and does not depend on the 
area of contact be tween the bodies or on the speed of the motion: 

Ffr= μ Ν . 

T h e quantity μ is called the coefficient of friction; it depends only 
on the propert ies of the surfaces which rub together. This rela
tion is usually satisfied to a good approximation over a wide 
range of experimental conditions (loads and rates of sliding), but 
deviations from it are also found. 

Frict ion depends considerably on the way in which the rubbing 
surfaces have been treated and on their present state (whether 
contaminated, and by what) . F o r example, the coefficient of 
friction be tween metal surfaces is usually in the range from 0-5 to 
1-5. These values, however , are for metal surfaces exposed to 
the air. Such surfaces are always contaminated by oxides , ad
sorbed gases, etc. , which impair the condit ions of contact . Ex
periment shows that completely clean metal surfaces prepared 
by heating in vacuum show very high friction in sliding, and 
sometimes " s t i ck" completely. 

The re is probably no single universal mechanism of friction, 
and the nature of friction is different for surfaces of different 
types and with different previous t reatment . A s an illustration we 
shall describe the mechanism of friction for certain metals. 

Exper iment shows that metal surfaces always exhibit irregu
larities which are large in comparison with molecular dis tances. 
Even for surfaces prepared and polished in the best possible way, 
the depth of the irregularities is 100-1000 Á , and rubbing sur
faces in engineering usually have much greater non-uniformities. 
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When bodies touch, the actual contact be tween them occurs only 
at the " p e a k s " of these non-uniformities. T h u s the area of actual 
contact 5o may be very small in comparison with the total nomi
nal area of contact 5 ; the ratio may be 10"^ or 10"^. In plastic 
metals, even under small loads, the " p e a k s " of the non-unifor
mities are deformed and flattened until the t rue pressure acting on 
them decreases to a certain value below which the deforma
tion ceases. T h e area of contact SQ is determined by the condition 
Piim'So = and is therefore proport ional to the load N. In the 
regions of actual contact , the forces of molecular cohesion bring 
about a strong " adhes ion" of the bodies . Dur ing sliding there is 
a continual separation and formation of fresh regions of contacts . 
T h e force required to break contact is proport ional to the area of 
contact So, and therefore to the load N. 

T h e frictional force during motion must be distinguished from 
the force needed at the beginning of the motion in order to start 
the body from rest. This limiting friction is also proport ional to 
the load, but the coefficient is somewhat greater than in motion 
(although the difference is not more than 1 0 - 2 0 % ) . 

It should be emphasised that the whole of the above discussion 
refers to friction between dry surfaces of solid bodies. It bears no 
relation to the friction be tween lubricated surfaces separated by a 
layer of fluid. In the latter case the frictional force is due to the 
viscosity of the liquid; a simple example of this type of friction 
wiU be discussed in § 119. 

As well as sliding friction, there is also the friction that occurs 
when one body rohs on another . Let us consider a cyhnder of 
radius r rolling on a plane. In order to overcome the frictional 
force and maintain steady rolling, a force F must be applied, 
which is described by the torque Κ about the ins tantaneous line 
of contact be tween the cylinder and the plane; if the force is 
applied to the axis of the cyhnder , then Κ = rF. T h e torque Κ is 
a measure of the rolhng friction; it is found to be proport ional 
to the force Ν which presses the rolling body to the surface on 
which it rohs: 

K = yN, 

T h e coefficient y depends on the two bodies in contact ; it clearly 
has the dimensions of length. 
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D I F F U S I O N A N D T H E R M A L 
C O N D U C T I O N 

§108. The diffusion coefficient 
In the preceding chapters we have discussed mainly the 

propert ies of bodies in thermal equilibrium. This chapter and 
the next deal with processes by means of which a state of 
equilibrium is reached, called kinetic processes. T h e s e are all 
essentially irreversible processes , since they bring a body closer 
to equiHbrium. 

If a solution has different concentrat ions at different points , 
the thermal motion of the molecules causes mixing of the solution 
in the course of t ime: the solute moves from regions of higher to 
regions of lower concentrat ion, until the composit ion of the 
solution becomes uniform throughout its volume. This process is 
called diffusion. 

F o r simplicity, let us assume that the concentrat ion of the 
solution (denoted by c ) varies only in one direction, which we 
shall take as that of the χ axis. T h e diffusion flux j is defined as 
the quantity of solute passing per unit t ime through a surface of 
unit area perpendicular to the χ axis, and will be taken as positive 
if the flux is in the positive direction of this axis, and negative if 
it is the opposite direction. Since matter passes from regions 
of higher to regions of lower concentrat ion, the sign of the flux 
is opposite to that of the derivative dcldx (called the concentra
tion gradient): if the concentrat ion increases from left to right, 
the flux is to the left, and conversely. If dcldx = 0, i.e. the con
centration of the solution is constant , there is no diffusion flux. 

All these propert ies are included in the following relation 
between the diffusion flux and the concentrat ion gradient: 

j=-D dcldx. 

318 
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Here D is a constant coefficient called the diffusion coefficient. 
This relation describes the propert ies of diffusion " p h e n o m e n o -
logically", that is, from its external manifestations. W e shall 
see below (§113) how a similar expression for the flux can be 
derived directly by considering the molecular mechanism of 
diffusion. 

T h e flux j in the above formula may be deñned in any manner : 
as the mass of solute passing through unit area, as the number of 
solute molecules, and so on, but the concentrat ion c must then 
be defined in a similar manner as the mass or number of molecules 
of solute per unit volume. Then it is evident that the diffusion 
coefficient will not depend on the way in which the flux and the 
concentrat ion are defined. 

T h e dimensions of the diffusion coefficient may be found as 
follows. Let j be the number of solute molecules passing through 
unit area per unit time. Then If] = 1/cm^sec. T h e concentrat ion 
is the number of solute molecules per unit volume, with dimen
sions [c] = 1/cm^. Compar ing dimensions on the two sides of 
the equation j = —D dcjdx, we find 

[D] = c m ^ s e c . 

When speaking of diffusion, we imply that it occurs in a 
medium at rest , so that the equalising of the concentrat ion occurs 
only because of the random thermal motion of the individual 
molecules. It is assumed that the liquid (or gas) is not mixed by 
any external interaction which causes it to move. 

Such mixing may occur in a liquid, however , because of 
gravity. If a light liquid such as alcohol is carefully poured on 
water , the liquids will mix by diffusion, but if water is poured 
on alcohol, s t reams of water (the heavier liquid) will descend and 
streams of alcohol will rise. 

Thus gravity may cause the composit ion of a medium to be 
equahsed by movement . This is called convection; it equahses 
the concentrat ion much more rapidly than diffusion. 

§ 109. The thermal conductivity 
T h e process of thermal conduction is akin to diffusion. If the 

temperature is different at different points in a body, a heat flux 
occurs from hotter to colder regions, and continues until the 
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temperature is the same throughout the body. H e r e again the 
mechanism of the process is based on the random thermal motion 
of the molecules: molecules belonging to the hotter parts of the 
body collide with molecules in adjoining colder parts and transmit 
to them part of their energy. 

A s in the discussion of diffusion, it is assumed that thermal 
conduction takes place in a medium at rest. In particular, it is 
assumed that the medium contains no pressure variations which 
would cause motion in it. 

Let us suppose that the temperature Τ of the medium varies 
only in one direction, which we again take as that of the χ axis. 
T h e heat flux q is defined as the quantity of heat passing per unit 
time through unit area perpendicular to the χ axis. Jus t as for 
diffusion, the relation between the heat flux and the tempera ture 
gradient dTjdx is 

q = —K dTldx. 

H e r e again the minus sign appears because the direction of the 
heat flux is opposite to that in which the temperature increases: 
heat flows in the direction of decreasing temperature . T h e 
coefficient κ is called the thermal conductivity. 

If the quantity of heat is measured in ergs, the heat flux will 
be measured in erg/cm^.sec, and the dimensions of the thermal 
conductivity are therefore 

[K] = [erg/cm.sec.deg] 
= [g.cm/sec^.deg]. 

T h e thermal conductivity determines the rate of flow of heat 
from hotter to colder regions. T h e change in tempera ture of a 
body is equal to the quanti ty of heat gained, divided by the 
specific heat. T h u s the rate of equalisation of the tempera ture at 
different points in the body is governed by the thermal conduc
tivity divided by the specific heat per unit volume, i.e. the 
quantity 

where ρ is the density and Cp the specific heat per unit mass (at 
constant pressure , since thermal conduct ion at constant pressure 
is being discussed). This quantity is called the thermal diffusivity. 
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It is easily seen to have the dimensions 

[χ] = cmVsec, 

which are the same as those of the diffusion coefficient. This is 
natural , since if both sides of the relation q = —KdTldx are 
divided by pCp the ratio qlpCp on the left-hand side may be 
regarded as a " t empera tu re flux", i.e. the flux of the quanti ty 
whose gradient appears on the right. T h u s the coefficient χ is a 
kind of diffusion coefficient for tempera ture . 

A s with diffusion, the action of gravity may cause convect ive 
mixing of a non-uniformly heated liquid (or gas). This occurs 
when the liquid is heated below (or cooled above): the hotter 
and therefore less dense lower layers of the liquid rise and are 
replaced by descending currents of colder liquid. T h e equalisation 
of temperature by convect ion occurs , of course , much more 
rapidly than by thermal conduction. 

As examples , the following table shows the values of the ther
mal conductivity for a number of hquids and sohds (at room 
temperature) . These values are given in units of J /cm. sec. deg, 
i.e. the heat flux is defined as the energy in joules t ransported 
through 1 cm^ in 1 sec. 

Water 6-0 x 10"^ Lead 0-35 
Benzene 1-5x10-^ Iron 0-75 
Glass 4 to 8 X 10-3 Coppe r 3-8 
Eboni te 1-7x10-^ Silver 4-2 

T h e very high thermal conductivity of metals should be noted. 
T h e reason for this is that in metals , unhke other bodies , heat is 
transferred by the thermal motion of free electrons, and not 
of a toms. T h e effectiveness of heat conduct ion by electrons is 
due to their high velocity, of the order of 10^ cm/sec , which is 
much higher than the ordinary thermal velocities of a toms and 
molecules (ΙΟ'* to 10^ cm/sec) . 

§ 110. Thermal resistance 
T h e simple relation given above be tween the heat flux and the 

temperature gradient makes possible the solution of various 
problems relating to thermal conduction. 
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Let us consider a layer of material (of thickness d) be tween two 
parallel planes, each of area 5 , and assume that these boundary 
planes are maintained at different temperatures J j and T2 (with 
Ti > T2). T h e thermal conductivity of the substance is in general 
a function of tempera ture , but we shall suppose that the difference 
be tween the temperatures and Γ2 is not very great, so that we 
may neglect the variation in the conductivity across the thickness 
of the layer and regard ,c as a constant . 

Let the χ axis be taken across the thickness of the layer, and let 
X be measured from the plane at temperature Γι. It is evident that 
a temperature distribution depending only on χ will be es tabhshed 
in the layer of material, and a heat flux through the layer from 
Γι to Γ2 will exist. Let us find the relation between this flux and 
the temperature difference Γι — Γ2 which causes it. 

T h e total heat flux Q through the whole cross-section of the 
layer (parallel to the boundary planes) per unit t ime is equal to the 
product qS of the flux q per unit area and the total area 5 of the 
cross-section. Using the relation be tween q and the tempera ture 
gradient, we can write 

Q = -KS dTldx. 

T h e flux Q is clearly independent of x, since no heat is absorbed 
in passing through the layer and none is evolved within the layer; 
the total quantity of heat passing per unit t ime through any sur
face which intersects the entire layer must therefore be the same. 
F rom the above equation we therefore have 

Τ = -{QIKS)X + constant , 

i.e. the temperature varies hnearly across the thickness of the 
layer. When JC = 0, i.e. on one of the boundary planes, we must 
have Γ = Γι; hence the constant is equal to Γι , and 

T=T,-{QIKS)X. 

At the other boundary plane (x = d) we must have Γ = Γ2, i.e. 

T2=T,-{QlKS)d. 
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Hence 

Q = (KSld){T,-T2). 

This formula gives the required relation be tween the heat flux Q 
and the temperature diff'erence across the layer. 

Let us now consider a layer of material bounded by two con
centric spheres (of radii and rg) maintained at tempera tures Γ, 
and Γ2· Figure 129 shows a central cross-section. T h e tempera
ture at any point within the layer is evidently a function only of 
the distance r from the centre of the spheres . 

F I G . 1 2 9 . 

Since the only coordinate on which the tempera ture depends in 
this case is r, the heat flux q is everywhere in the radial direction, 
and is 

q = —K dTldr. 

T h e total heat flux through a spherical surface of radius r con
centric with both spheres and lying be tween them is 

Q = 4jrr'g = - 4πκΓ2 dT/dr, 

whence 

dT/dr = -Q ΙΑπκΓ". 
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As in the previous case , the total heat flux through any closed sur
face enclosing the inner sphere must be the same, and Q is 
therefore independent of r. T h e above equation then gives 

Τ = -r^— H- constant . 

T h e constant is determined by the condition that Γ = Γι for r = r j , 
so that 

FinaUy, from the condition that Γ = Γ2 for r = r2 we obtain the 
following relation between the total heat flux and the temperature 
difl'erence across the layer: 

( Γ , - Γ 2 ) . 4 7 Γ Κ 

^ 1 Μ - 1 / Γ 2 · 

In particular, if 2̂ = 00, i.e. if there is an infinite medium round a 
spherical surface of radius (Γ2 in this case being the tempera
ture at infinity), the expression for the heat flux becomes 

T h e ratio of the temperature diiference at the boundaries of a 
body to the total heat flux is called the thermal resistance of the 
body. T h e above formulae show that the thermal resistance of a 
plane slab is άΙκ8, and that of a spherical layer is 

— { - - - ) \ TTK\r^ r2/ 

Entirely similar results are evidently obtained for diffusion in a 
solution bounded by two planes or two spherical surfaces on 
which given concentrat ions are maintained. In the above for
mulae we need only replace the temperature by the concentrat ion, 
the heat flux by the diffusion flux and κ by the diffusion coefficient 
D. 

Pure Mathematical Physics



§110] T H E R M A L RESISTANCE 325 

Let us apply these formulae to the problem of rate of melting, 
and consider a piece of ice immersed in water at a tempera ture 
Γι above 0°C. Since equihbrium be tween ice and water is 
possible (at a tmospheric pressure) only at a definite tempera
ture ro = 0°C, the water immediately adjoining the ice wiU be at 
this temperature . At increasing distances from the ice, the water 
temperature is greater and tends to Γχ. The re wih be a heat flux 
from the water to the ice. On reaching the ice, the heat is absorbed 
as the heat of fusion necessary to convert ice into water . F o r 
example, if the piece of ice is spherical (with radius ro), it wiU 
receive per unit t ime from the surrounding water (which we regard 
as an infinite medium) a quanti ty of heat 

ρ = 47ΓΚΓο(Γι-Γο). 

Dividing this by the heat of fusion, we find the quanti ty of ice 
which meUs per unit t ime. T h u s the ra te of meUing is determined 
by the process of thermal conduct ion in the surrounding water . 

Similarly, the rate of dissolution of a sohd in a liquid is deter
mined by the rate of diffusion of solute in the hquid. N e a r the 
surface of the sohd, a thin layer of saturated solution is imme
diately formed; further dissolution takes place as the solute 
diffuses from this layer into the surrounding hquid. F o r example , 
if the sohd is a sphere of radius r o , the total diffusion flux J from 
the sphere into the solvent, which is the quanti ty of substance 
dissolving per unit t ime, is 

J = ATTDr^CQ. 

H e r e Co is the concentrat ion of the saturated solution, and the 
concentrat ion in the liquid at a great distance from the sphere is 
taken to be zero. 

Processes of diflFusion and thermal conduct ion also determine 
the rate of evaporat ion of a liquid drop in a gas of another sub
stance, such as air. T h e drop is surrounded by a layer of saturated 
vapour, from which the substance slowly diffuses into the sur
rounding air. T h e process of heat transfer from the air to the drop 
is also of importance. 

These examples are typical in that the rates of phase transit ions 
occurring under steady-state condit ions are usually determined 
by processes of diffusion and thermal conduct ion. 
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§111. The equalisation time 
If the concentrat ion of a solution is different at different points , 

then, as we know, the composit ion will be equahsed in the course 
of t ime by diffusion. Let us determine the order of magnitude of 
the time / required for this process . This may be done from 
considerat ions of the dimensions of the quantities on which this 
t ime can depend. 

Firs t of all, it is evident that the time t cannot depend on the 
actual concentrat ions of the solution, for if all the concentrat ions 
are changed by a given factor, the diffusion flux which equalises 
the concentrat ions is changed by the same factor, and the 
equalisation time therefore remains unchanged. 

T h e only physical quantities on which the time / of diffusion 
equalisation can depend are the diffusion coefficient D in the 
medium concerned and the size of the region in which the con
centrat ions are different; let the linear size of this region be of 
order of magnitude L. 

T h e dimensions are [D] = cm^/sec, [L] = cm. It is evident that 
only one combination having the dimensions of t ime can be 
formed from these quantit ies, namely L^/D, and this must give 
the order of magnitude of the t ime /: 

/ ~ LVD, 

Thus the time for equalisation of concentrat ions in a region of 
size L is proportional to the square of L and inversely proport ional 
to the diffusion coefficient. 

This question can be inversely stated as follows. Let us suppose 
that at some initial instant there is a certain quantity of solute 
concentra ted in a small region of the solvent. In time this accumu
lation of solute will be dispersed by the effect of diffusion, and 
will be distributed throughout the whole large volume of the 
solvent. What is the mean distance L t raversed by the diffusing 
substance in a time r? Tha t is, we now wish to find the distance 
from the t ime, not the time from the distance. T h e answer is 
clearly given by the same formula, which must now be writ ten 

L - V{Dt), 

Thus in a time / the diffusing substance spreads to a distance 
proportional to V/. 
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This relation may also be regarded in another way. Let us 
consider any one molecule of solute in the solution. Like aU 
molecules it has a random thermal motion. W e may ask what is 
the order of magnitude of the distance which this molecule can 
t raverse from its initial position in t ime V, in other words , what 
is the mean straight-line distance be tween the initial and ñnal 
positions of a molecule which has moved for a time /. Ins tead of 
considering a single molecule, let us suppose that there is a very 
large number of molecules close together. Then , as we have seen, 
in the course of t ime these molecules will move apart in all 
directions by diffusion, and the average distance traveUed is 
L ~ λ / φ / ) . This distance L is clearly also the mean distance that 
each molecule moves from its original position in time t. 

This resuU apphes not only to molecules of solute but also to 
any particles suspended in a hquid and executing Brownian 
motion. 

T h e above discussion has referred entirely to diffusion, 
but the same arguments apply also to thermal conduction. W e 
have seen in §109 that in the propagation of heat the diffusion 
coefficient is replaced by the thermal diffusivity χ. T h u s the 
temperature equahsat ion time in a body of hnear size L is 

This relation also can be inverted as was done above for the 
case of diffusion. In this connect ion let us consider the following 
problem. W e assume that fluctuations of tempera ture with some 
frequency ω are artificially created on the surface of a body. T h e s e 
fluctuations wih penetrate into the body, producing what is cahed 
a thermal wave. T h e amphtude of the fluctuations, however , wiU 
be damped with increasing depth in the body, and the quest ion 
is to what depth L the fluctuations penetra te . H e r e the charac
teristic time is the period of the fluctuations, i.e. the reciprocal 
of the frequency. Substituting 1/ω for t in the relation be tween the 
distance of heat propagation and the t ime, we obtain 

L ~ ν ( χ / ω ) . 

This is the solution to the problem. 
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§112. The mean free path 
Turning now to discuss thermal conduction and diffusion 

in gases, we must first consider the nature of the interaction 
between gas molecules in somewhat more detail than hitherto. 

G a s molecules interact by means of colHsions. During the 
greater part of the t ime, the molecules are comparat ively far 
apart and move as if free, scarcely interacting at all. T h e mole
cules interact only during short intervals of t ime when they 
colHde with one another. In this respect a gas differs from a 
Hquid, in which the molecules are continuously interacting, and 
they cannot be said to undergo separate "colHsions". 

Molecules may colHde in various ways . Strictly speaking, in 
each passage of molecules at not too great a dis tance they 
undergo some change in velocity, and the concept of a "colHsion" 
is therefore not entirely precise. In order to make the concept 
more definite, we shaU regard as colHsions only those cases 
where the molecules pass so close that the interaction consider
ably alters their motion, i.e. their velocities are considerably 
changed in magnitude or direction. 

ColHsions between molecules in a gas occur completely ran
domly, and the distance traveUed by a molecule be tween two 
successive colHsions may therefore have any value. W e can, 
however , define a mean value of this dis tance, which is caHed the 
mean free path of the molecules, and is an important molecular-
kinetic property of the gas; it will be denoted by /. A s weH as 
the mean free path, we may consider also the mean time τ 
between two successive colHsions. In order of magnitude, 
evidently, 

τ llv, 

where ν is the mean velocity of thermal motion of molecules. 
Let us consider two colhding molecules, regarding one of 

them as being at rest in a certain plane, and the other as crossing 
this plane. A s explained above, the molecules wiU be said to 
coHide only when they pass so close that their motion is con
siderably altered. This means that the moving molecule collides 
with the stationary one only if it meets the plane somewhere 
within a certain small region around the fixed molecule. This 
" t a rge t " area which the molecule must strike is called the effective 
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cross-section (or simply the cross-section) for colhsions, and wiU 
be denoted by σ. 

As an example , let us determine the colhsion cross-section 
for molecules regarded as solid spheres of radius TQ. T h e greatest 
distance be tween the centres of two spheres at which they can 
pass and stiU touch is Ir^. T h u s the " ta rge t" area which the 
molecule must strike if a colhsion is to occur is a circle of radius 
2ro round the centre of the stat ionary molecule. T h u s the collision 
cross-section in this case is 

σ = 4πro^ 

or four times the cross-sectional area of the sphere. 
In reahty, of course , molecules are not sohd spheres , but since 

the interaction force be tween two molecules decreases very 
rapidly with increasing distance be tween them, colhsions occur 
only if the molecules almost " g r a z e " each other. T h e collision 
cross-section is therefore of the order of magnitude of the cross-
sectional area of the molecule. 

Let a molecule t raverse a distance of unit length in its motion, 
and let us imagine the molecule as sweeping out a volume of unit 
length and cross-sectional area σ ; the magnitude of this volume 
is also σ. T h e molecule colhdes with all molecules lying within 
this cyhnder. Let η be the number of molecules per unit volume. 
Then the number of molecules in the volume σ is ησ , and the 
molecule therefore undergoes ησ colhsions per unit length of 
path. T h e mean distance be tween two colhsions, i.e. the mean 
free path, is in order of magnitude 

/ ~ Una, 

It is seen from this expression that the mean free path is in
versely proportional to the gas density and depends on no other 
quantity. 

It must be remembered , however , that this last s ta tement is 
vahd only if the cross-section is assumed constant . Because 
the repulsion forces increase very rapidly as the molecules 
approach, molecules usuaUy behave quahtatively as elastic 
sohd particles, which interact only when they " g r a z e " each other. 
U n d e r these conditions the colhsion cross-section is in fact a 
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constant (depending only on the nature of the molecules). The re 
are also, however , weak forces of at traction be tween molecules 
at greater distances. As the temperature decreases , the velocities 
of the gas molecules become less, and thus the durat ion of a 
colhsion between two molecules (passing at a given distance) 
increases. Because of this " lengthening" of the colhsion the 
motion of the molecules may be considerably changed even if 
they pass relatively far from each other. T h u s , when the tempera
ture decreases , the colhsion cross-section increases somewhat . 
F o r example, in» nitrogen and oxygen σ increases by about 3 0 % 
when the tempera ture fahs from -hl00°C to - 1 0 0 ° C , and in 
hydrogen by 20%. 

F o r air at 0°C and atmospheric pressure , AZ « 3 x 10^^. T h e 
cross-section σ ~ 5 x lO"^^ cm^, and therefore the mean free 
path of the molecules / « 10"^ cm. T h e mean thermal velocity 
of the molecules v — 5x 10^ cm/sec , and the t ime be tween 
collisions is accordingly T ~ 2 X lO'^^sec. T h e mean free path 
increases rapidly with decreasing pressure . F o r instance, at an 
air pressure of 1 mm H g / lO ' ^cm; in a high vacuum of the 
order of 10"^ mm H g pressure , the mean free path reaches 
values of tens of metres . 

§113. Diffusion and thermal conduction in gases 
By means of the concept of the mean free path we can deter

mine the order of magnitude of the diffusion coefficient and the 
thermal conductivity and ascertain how they depend on the state 
of the gas. Let us take ñrst the diffusion coefficient and consider 
a mixture of two gases whose total pressure is everywhere con
stant but whose composit ion varies in one direction, which we 
take as that of the χ axis. 

Let fii be the number of molecules of one of the gases in the 
mixture per unit volume; this number is a function of the co
ordinate X. T h e diffusion flux J is the number of molecules pass
ing per unit t ime through unit area perpendicular to the χ axis 
and moving in the positive direction of that axis, minus the 
corresponding number moving in the negative direction. 

T h e number of molecules passing through unit area per unit 
t ime is equal in order of magnitude to itiV, where ν is the mean 
thermal velocity of the molecules. H e r e we may suppose that 
the number of molecules crossing this area from left to right 
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is determined by the density at the point where the molecules 
underwent their last colHsion, i.e. at a distance / to the left of 
the area; similarly, for molecules going from right to left we must 
take the value of Πι at a distance / to the right of the area. If the 
coordinate of the area itself is x, the diffusion flux is given by 

j ~ vfiiix — I) — vni(x + /). 

Since the mean free path / is a small quanti ty, the difference 
AZiU — / ) — AZi( jc - f / ) may here be replaced by —/ dnjdx. T h u s 

j -- — vl drill dx. 

Compar ison of this expression with the formula j = —D dnjdx 
shows that the diffusion coefficient in a gas is in order of magni
tude 

D - vL 

T h e mean free path / ΙΙησ, where η is the total number of 
molecules of the two gases per unit volume. T h u s D may also 
be written as 

D ~ νίησ. 

Finally, the equation of state of an ideal gas shows that the 
number density of molecules in it is η = p/kT, so that 

D ~ vkTlpa. 

T h e diffusion coefficient in a gas is therefore inversely propor
tional to its pressure (at a given temperature) . Since the thermal 
velocity of the molecules is proport ional to V t , the diffusion 
coefficient increases with tempera ture as T^'^ if the collision 
cross-section may be regarded as constant . 

T h e following comment should be made concerning the fore
going derivation. In calculating j we have argued as if only one 
gas were present , whereas in reality there is a mixture of two 
gases. It is therefore, strictly speaking, uncertain to which of the 
two gases the quantities σ and ν pertain. Since only the order of 
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magnitude of the diffusion coefficient is being est imated, this 
point is unimportant if the molecules of the two gases are similar 
in mass and size, but it may become significant if there is a great 
difference between them. A more detailed discussion shows that 
in this case ν must be taken as the greater of the thermal velocities 
(i.e. the velocity of the molecules of smaller mass) , and σ as the 
greater of the cross-sections. 

As well as mutual diffusion of different gases, there can occur 
mutual diffusion of different isotopes of the same substance. 
Since the only difference be tween the isotopic molecules is the 
relatively shght difference in mass , this is a type of diffusion of 
gas molecules in their own gas, called self diffusion. T h e difference 
in mass of the molecules here acts in practice only as a " labe l" 
whereby one molecule may be distinguished from others . 

T h e self-diffusion coefficient of a gas is given by the same 
formula 

D ~ vU 

where there is now no problem as to the significance of the quan
tities which appear, since all refer to molecules of the only gas 
present . 

As examples , the following are the values of the diffusion 
coefficient in a number of gases at a tmospher ic pressure and 
O^C (in cm^/sec): 

Hydrogen-oxygen mixture 0-70 
Carbon dioxide-air mixture 0-14 
Water vapour -a i r mixture 0-23 
Ni t rogen (self-diffusion) 0-18 
Oxygen (self-diffusion) 0-18 
Carbon dioxide (self-diffusion) 0-10 

Diffusion in gases occurs much more rapidly than in hquids. 
F o r comparison we may mention that the diffusion coefficient of 
sugar in water (at room temperature) is only 0-3 x 10"^ cmVsec, 
and that of sodium chloride in water is 1 · 1 x 10~^ cmVsec. 

It is of interest to compare the true distance travelled by gas 
molecules in their thermal motion with their mean directed 
displacement in diffusion. F o r instance, air molecules under 
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normal conditions travel distances of the order of 5 x 10^ cm/sec . 
T h e diffusion displacement per second is, in order of magnitude, 
only V(D/) - V(0-2 x 1) ~ 0-5 cm. 

T h e determination of the thermal conductivi ty of a gas does not 
require any essentially new calculations: we need only make use 
of the analogy noted in §109 be tween the processes of thermal 
conduction and diffusion, whereby thermal conduct ion appears 
as a "diffusion of energy" , with the thermal diffusivity χ acting 
as the diffusion coefficient. In a gas, the two processes occur by 
the same mechanism, namely direct t ransport by gas molecules. 
We can therefore say that , in order of magnitude, the thermal 
diffusivity X is equal to the self-diffusion coefficient of the gas, i.e. 

X ~ vL 

T h e thermal conductivity κ is obtained by multiplying χ by 
the specific heat of the gas per unit volume. This volume contains 
niNo gram-molecules of the gas (where No is Avogadro ' s number) , 
and the volume specific heat is therefore nCiNo, where C is 
the molar specific heat ; there is no need to distinguish be tween 
Cp and Cy, since they are the same in order of magnitude. T h u s 

κ ~ xnCiNo - vlnClNo, 

and substituting / - Ι /ησ we have finally 

κ ~ vClaNo. 

T h e molar specific heat of a gas is independent of its density. 
W e therefore arrive at a remarkable (and at first sight paradoxical) 
result: the thermal conductivity of a gas depends only on its 
temperature , and not on its density or pressure . 

T h e specific heat of a gas depends only slightly on the tem
perature , and the same is t rue of the cross-section. W e can there
fore suppose that the thermal conductivi ty of a gas, hke the 
thermal velocity v, is proport ional to V T . In reahty, the thermal 
conductivity increases somewhat more rapidly with tempera ture , 
because the specific heat usuahy increases and the cross-section 
usuaUy decreases . 
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A s examples , the following are the values of the thermal con
ductivity of some gases at 0°C (in J/cm.sec.deg): 

Chlorine 0-72 X 10"^ Air 2-41 X 10"^ 
Carbon dioxide 1-45x10-^ Hydrogen 16-8 x 10"^ 

§114. Mobility 

Let consider a gas containing a number of charged particles 
(ions;. If this gas is placed in an electric held, an ordered motion 
in the direction of the field is superposed on the random thermal 
motion of the ions which they execute in common with the gas 
molecules. If the ions were completely free particles, they would 
move with steadily increasing velocity under the action of the 
apphed field. In reality, however , the ions move freely only in 
the intervals between colhsions with the other particles in the gas. 
In cohisions the particles are randomly scat tered, and so the 
ions essentiaUy lose the directed velocity which they acquire 
between colhsions. Thus a motion resuUs in which the ions, on 
average, slowly move or drift in the direction of the field at a 
certain velocity u proportional to the field strength. 

T h e order of magnitude of this velocity is easily est imated as 
follows. An ion of charge e and mass m in an electric field Ε is 
subject to a force F=eE, which gives the ion an acceleration 
w = Elm. T h e ion moves with this acceleration during the mean 
free time r , and acquires a directed velocity of the order u ~ wr. 
Putting τ ~ //f, where υ is the velocity of thermal motion of the 
ions, we have 

u ~ Fllmv. 

T h e drift velocity u acquired by the ions under the action of the 
external field is usuahy written in the form 

u = KF\ 

the coefficient of proportionality Κ be tween the velocity and the 
force F acting on the ions is cahed the ion mobility. 

As examples , the values of the mobihty at 20°C and atmos
pheric pressure are 

for Hg"̂  ions in Hg gas 8-6 X 10^^ cm/sec.dyn, 
for Na"̂  ions in N 2 gas 1 -7 x 10^^ cm/sec.dyn. 
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This means , for example, that a field of 1 V /cm will cause Ng^ 
ions in nitrogen to drift with a velocity 1-7 x 10^^ χ 4.3 χ IQ-IO χ 
1 / 3 0 0 = 3 cm/sec. 

F r o m the above est imate of the velocity u it is seen that 
Κ ~ llmv. Comparing this with the diffusion coefficient for the 
same particles (ions) in the gas, D ~ /u, we see that D mv'K, 
and since mv' ~ kT we have 

D ~ kTK, 

We shall show that this relation be tween the diffusion coefficient 
and the mobility of the particles is in fact an exact equahty. 

According to Bol tzmann's formula, in a state of thermal equilib
rium the ion concentrat ion in a gas in a constant external electric 
field (which we take to be in the direction of the χ axis) is propor
tional to 

where U(x) = —Fx is the potential energy of an ion in the field; it 
varies through the gas, increasing in the direction of the field. 
When a concentrat ion gradient is present , however , a diffusion 
flux j = —D dcldx occurs . Let the concentrat ion c be defined as 
the number of ions per unit volume of the gas, in the form 

c = constant x β^""""^, 

since dcldx = {FlkT)c, we have 

j=-cDFIkT, 

In a steady (equiHbrium) state, however , there can be no transfer 
of material in the gas. Thus the diffusion flux j in the opposi te 
direction to the field must jus t compensa te the drift flux of the 
ions in the direction of the field, which is evidently cu = cKF. 
Equating the two expressions, we obtain 

D = kTK, 

This relation between the mobihty and the diffusion coefficient, 
caHed Einstein's relation, has been derived here for gases , but is 
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in fact general. It applies to any particles dissolved or suspended 
in a gas or a liquid and moving under the action of any external 
held (electric or gravitational). 

§115. Thermal diflFusion 
In discussing diffusion in a gas mixture, v^e have so far tacitly 

assumed that the temperature (and pressure) of the gas is every
where the same, so that diffusion occurs only because of the con
centration gradient in the mixture. In reality it is found that a 
temperature gradient also may bring about diffusion. In a non-
uniformly heated mixture, diffusion occurs even if the composi
tion is uniform; the difference in the thermal motion of the mole
cules of different components of the mixture (i.e. the difference in 
their thermal velocities and cross-sections) has the result that the 
two components appear in different proport ions in the numbers of 
molecules crossing any area in the direction of the tempera ture 
gradient and in the opposi te direction. T h e occurrence of a 
diffusion flux under the action of a temperature gradient is called 
thermal diffusion. This phenomenon is particularly important in 
gases, which we shah henceforward consider, but exists in 
principle in hquid mixtures also. 

T h e diffusion flux yV in thermal diffusion is proportional to the 
temperature gradient in the gas, and is customarily writ ten in the 
form 

1 dT 

T h e quanti ty DT is called the thermal diffusion coefficient. H e r e 
we should specify exactly what is meant by the flux jV (unlike the 
case of ordinary diffusion, where the coefficient D is independent 
of the way in which the flux is defined); we shaU not pause to do 
this, however . Whereas the diffusion coefficient D is always posi
tive, the sign of the thermal diffusion coefficient is by its nature 
indeterminate, depending on which component of the mixture is 
considered. 

When the concentrat ion of either component of a mixture 
tends to zero, the thermal diffusion coefficient must become zero , 
since there is of course no thermal diffusion in a pure gas. T h u s 
the thermal diffusion coefficient depends considerably on the 
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concentrat ion of the mixture, again unhke the ordinary diffusion 
coefficient. 

Because of thermal diffusion, concentra t ion differences occur 
between regions at different tempera tures even in a gas mixture 
of initially uniform composit ion. T h e s e concentra t ion differences 
in turn cause ordinary diffusion, which acts in the opposi te direc
tion, i.e. tends to annul the concentra t ion gradient that has been 
formed. U n d e r steady condit ions, when a constant tempera ture 
gradient is maintained in the gas, these two opposi te effects finally 
bring about a s teady state in which the two fluxes compensa te 
each other; in this state there is a certain difference in composi
tion be tween the " h o t " and "co ld" ends of the gas. 

Let us consider the simple case where the molecules of the two 
gases in the mixture are so different in mass that the thermal velo
city of the " h e a v y " molecules is small compared with that of the 
"l ight" molecules. T h e light molecules, on colhding with the 
heavy molecules, which may be regarded as at rest , rebound from 
them elastically, and under these condit ions we need consider 
only the diffusion t ransport of the fighter component of the 
mixture. 

Let fti be the number of molecules of the light component per 
unit volume, and Vi their thermal velocity. T h e flux of this com
ponent in the X direction can be est imated by taking the difference 
between the values of the product riiVi at the points x — li and 
x-i-lu where 4 is the mean free path of the molecules. A s in 
§113, this difference may be replaced by 

-lid{niVi)ldx. 

H e n c e we see that the transfer of material ceases (i.e. a s teady 
state is es tabhshed) when the product ftiVi becomes constant 
throughout the gas. But Πι = c n , where c is the concentra t ion 
of the light component , and η the total number of molecules per 
unit volume, which is equal to pIkT. Since the total pressure 
ρ of the gas is everywhere the same, and the thermal velocity Vi 
is proportional to V T , the condition that riiVi is constant imphes 
that the ratio C/VT is constant . In o ther words , in the s teady 
state the concentrat ion of the fight component is greater in the 
hotter regions. 

This is in fact the way in which the composi t ion varies in the 
majority of cases: the lighter gas usually accumulates at the " h o t " 
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end. This rule is not completely general, however , and the mass 
of the molecules is not the only factor which determines the 
direction of thermal diffusion. 

T h e phenomenon of thermal diffusion is utilised for the separa
tion of gas mixtures, and in particular for the separation of iso
topes. T h e principle of the method is clear from the construct ion 
of a simple "separat ing co lumn" operating by thermal diffusion 
(Fig. 130). This consists of a long vertical glass tube with an 
electrically heated wire along its axis; the walls of the tube are 
cooled. T h e hot gas mixture rises along the axis and the cold 

I I 

F I G . 1 3 0 . 

mixture descends along the walls. At the same time a process 
of radial thermal diffusion occurs , as a result of which one com
ponent of the mixture (usually that of greater molecular weight) 
diffuses predominantly to the periphery, and the other to the 
axis. T h e components are entrained by the descending and 
rising currents , and accumulate at the bot tom and top of the tube 
respectively. 

§116. Diffusion in solids 
Diffusion can also occur in sohds, but is an extremely slow 

process . T h e phenomenon can be observed, for example , by 
fusing gold on the end of a rod of lead and keeping it at a high 
temperature , say 300°C; even in 24 hours , the gold penetra tes 
about a cent imetre into the lead. 
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T h e number of a toms which can participate in diffusion wih also 
be proportional to such a factor, and therefore so will the diffusion 
coefficient. T h e value of the activation energy Ε per a tom (EINQ) 

is usually between a fraction of an electron-volt and several 
electron-volts. F o r example, in the diffusion of carbon in iron 
Ε is about lOOkJ/mole (i.e. about 1 eV per a tom); for the self-
diffusion of copper , Ε is about 200 kJ/mole (about 2 eV per atom). 

T h u s the diffusion coefficient in sohds increases very rapidly 
with increasing temperature . F o r instance, the diffusion coeffi
cient of zinc in copper increases by a factor of 10^^ when the 
temperature is raised from room tempera ture to 300°C. O n e of 
the most rapidly diffusing pairs of metals is gold and lead, which 
have already been mentioned above. T h e diffusion coefficient of 

The re is, of course , also self-diffusion in s o h d s - t h e mutual 
diffusion of isotopes of the same substance. This can be observed 
by means of radioactive isotopes. If, for example , a quanti ty of 
a radioisotope of copper is placed on the end of a copper rod and 
the rod is later cut into pieces, the radioactivity of the pieces 
gives an idea of the diffusion of the isotope. 

T h e slowness of diffusion in sohds is entirely unders tandable 
in view of the nature of the thermal motion of the a toms in them. 
In gases, and even in hquids, the random thermal motion of the 
molecules includes a "translat ional componen t " , the molecules 
moving through the volume occupied by the body. In sohds , 
however , the a toms are almost a lways near certain equilibrium 
positions (the lattice points) and execute smah osciUations about 
these; such a motion can not lead to any general movement of 
the a toms through the body, nor therefore to diffusion. Only 
atoms which leave their positions in the lattice and move to o ther 
lattice points can take part in diffusion. 

However , each atom in a sohd is surrounded by a potential 
barrier. An atom can leave its position only by surmounting this 
barrier, and to do so it must have sufficient energy. A similar 
situation has been discussed in connect ion with the rates of 
chemical reactions (§91), where we saw that the number of 
molecules able to react is proport ional to an "activat ion factor" 
of the form 
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gold in lead at room temperature is 4 x lO"^» cm^/sec; at 300°C it 
is 1 X 10~^cmVsec. These figures also show the slowness of the 
diffusion process in sohds. 

T h e acceleration of diffusion by increasing the temperature is 
the basis of the annealing of metals: in order to make the com
position of an alloy homogeneous, it is held for a considerable 
time at a high temperature. T h e same method is used to relax 
internal stresses in metals. 

In solid solutions of the interstitial type, the solute atoms 
occupy positions in the "gaps" between atoms at the original 
lattice points. T h e diffusion in such solutions (e.g. of carbon in 
iron) takes place simply by the movement of the interstitial 
atoms from one gap to another. In substitution-type solutions, 
however, in an ideal crystal, all the available places are occupied; 
diffusion in such an ideal crystal would have to take place by 
simultaneous exchange of positions of two different atoms. In 
an actual crystal, there are always unoccupied places or vacan
cies, as already mentioned in §105. These play an important part 
in the actual mechanism of diffusion, which occurs by atoms from 
adjoining occupied lattice points "jumping" to the vacant 
positions. 

Pure Mathematical Physics



C H A P T E R X V 

V I S C O S I T Y 

§117. The coefficient of viscosity 
Let us consider a flow of hquid (or gas) in which the velocity 

of flow is different at different points. This is not an equilibrium 
state, and processes will occur which tend to equahse the veloci
ties of flow. Such processes are cahed internal friction or vis
cosity. Jus t as there is a heat flux from the hotter to the colder 
parts of a medium in thermal conduct ion, so in internal friction 
the thermal motion of the molecules causes a transfer of momen
tum from the faster to the slower regions of the flow. 

Thus the three phenomena of diffusion, thermal conduction 
and viscosity have analogous mechanisms. In ah three there is an 
equalisation of a property of the body (composit ion, tempera ture , 
or velocity of flow) if this proper ty is originaUy not uniform 
through the body; this brings about an approach to a state of 
thermal equilibrium. In ah three cases this is achieved by a 
molecular t ransport of some quanti ty from one part of the body 
to another. In diffusion there is a t ransport of number of particles 
of the various components of the mixture, in thermal conduct ion 
a t ransport of energy, and in internal friction a t ransport of 
momentum. A h these effects are therefore often combined under 
the general name of transport phenomena. 

Let us suppose that a hquid is flowing in the same direction at 
ah points , i.e. that the flow velocity vector u has the same 
direction throughout the flow, and suppose also that the mag
nitude u of the velocity varies in only one direction, perpendicular 
to that of the velocity, the direction of its variation being taken as 
that of the χ axis: u = u{x). 

By analogy with the diffusion flux and the heat flux, we can 
define the momentum flux Π as being the total momen tum trans
ported per unit t ime in the positive direction of the χ axis across 
unit area perpendicular to that axis. In exactly the same way as 

3 4 1 
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for the other t ransport processes , we can say that the momentum 
flux is proportional to the gradient of the flow velocity u\ 

Υ1 = --η duldx. 

T h e quantity η is called the coefficient of viscosity or simply the 
viscosity of the medium. 

T h e dimensions of the flux Π are those of momentum divided 
by area and t ime, i.e. [Π] = g/cm.sec^. T h e dimensions of duldx 
are 1/sec. H e n c e 

[T?] = g/sec.cm. 

T h e unit of viscosity in the C G S system is the poise (P). 
T h e viscosity determines the rate of t ransport of momentum 

from one point in the flow to another. T h e velocity is equal to the 
momentum divided by the mass. T h e rate of equahsat ion of the 
flow velocity is therefore determined by the quanti ty η /ρ , where 
ρ is the density, i.e. the mass of the hquid per unit volume. T h e 
quantity ν = η /ρ is called the kinematic viscosity, whereas η 
itself is called the dynamic viscosity. I t is easily seen that 

[v] = cmVsec, 

i.e. V has the same dimensions as the diffusion coefficient and the 
thermal diffusivity; the kinematic viscosity is a kind of diffusion 
coefficient for velocity. 

Let us suppose that a hquid flows in contact with a sohd surface; 
for example, along the walls of a pipe. Between the surface of a 
solid and any actual hquid (or gas) there always exist forces of 
molecular cohesion which have the result that the layer of liquid 
immediately adjoining the surface is entirely brought to rest and 
" a d h e r e s " to the surface. Thus the flow velocity is zero at the 
wall, and increases away from the wall into the liquid; as a result 
of viscosity, there then occurs a flux of momentum from the hquid 
towards the wall. 

As we know from mechanics , the change in the momentum of a 
body per unit t ime is the force acting on the body. T h e momentum 
Π transported through unit area per unit t ime and ultimately 
transferred from the hquid to the wall represents the frictional 
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force exerted on unit area of the solid wah by the liquid flowing 
past it. 

T h e fohowing comment should be added concerning the simple 
formula for Π given above. Although the formal analogy already 
mentioned exists be tween the phenomena of diffusion, thermal 
conduction and viscosity, there is also an important diff^erence 
between them, due to the fact that concentrat ion and tempera
ture are scalar quantit ies, whereas velocity is a vector. H e r e we 
have taken only the simple case where the velocity is every
where in the same direction; the formula given above for Π is 
vahd only in this case. T h e impossibihty of applying this for
mula when the direction of the velocity u is different at different 
points is evident from the example of a liquid rotating uniformly 
as a rigid body together with a cylindrical vessel , about the axis 
of the vessel. T h e circular velocity of the liquid particles increases 
with distance from the axis. The re is, never theless , no flux of 
momentum, i.e. no frictional forces, in the liquid; a uniform rigid 
rotation of the hquid (if there is no friction in the suspension of 
the vessel) does not affect thermal equilibrium and could cont inue 
indefinitely without the velocity 's becoming uniform. 

§ 118. Viscosity of gases and Hquids 
T h e viscosity of a gas may be est imated from the fact that inter

nal friction, thermal conduct ion and self-diffusion ah occur in a 
gas by the same molecular mechanism. In this case the quanti ty 
analogous to the diffusion coefficient is the kinematic viscosity 
V = η I p . We can therefore say that , for a gas, all three quantit ies 
V, X and D are of the same order of magnitude, and thus we have 
V ~ vL T h e gas density p = nm, where m is the mass of a mole
cule and η the number of molecules per unit volume; hence we 
have for the viscosity η = νρ the expression 

η ~ mnvl ~ mv/a, 

where σ is the colhsion cross-section. 
W e see that the viscosity, hke the thermal conductivi ty, is 

independent of the pressure of the gas. Since the thermal velocity 
V is proportional to V T , we may suppose that the viscosity of 
the gas is also proportional to the square root of the temperature . 
This conclusion is, however , valid only if we can regard the 
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T7 
(g/sec.cm) 

V 

(cmVsec) 

Hydrogen 0 - 8 8 x 1 0 - ^ 0-95 
Air 1-8 X 10-4 0 1 5 0 
Benzene 0-65 0-72 
Water 0 0 1 0 0 0 1 0 
Mercury 0 0 1 5 5 0 0 0 1 4 
Glycerine 1 5 0 1 2 0 

It is interesting to note that, whereas the dynamic viscosity of 
water is considerably greater than that of air, the reverse is t rue 
for the kinematic viscosity. 

T h e viscosity of a hquid usually decreases with increasing 
temperature; this is reasonable , since the relative motion of the 
molecules becomes easier. In hquids of low viscosity, such as 
water, the decrease is appreciable but not very great. The re are , 
however , liquids, mainly organic (such as glycerine), whose 
viscosity decreases very rapidly with rising temperature . F o r 
example, a rise in tempera ture of 10° (from 20 to 30°C) causes 
the viscosity η of water to decrease only by 20%, whereas that 
of glycerine decreases by a factor of 2-5. T h e decrease in vis
cosity of such hquids takes place exponentiaUy, in proport ion to 
a factor of the form e~^'^'^\ for glycerine, Ε ^ 65 000 J /mole. A s 
we already know (cf. §116), this law of tempera ture dependence 
signiñes that the occurrence of the process (in this case the 
relative motion of the molecules) requires the overcoming of a 
potential barrier. 

When the tempera ture decreases , a viscous hquid rapidly 
congeals into an amorphous solid. It has already been men-

collision cross-section σ as constant . It has been mentioned in 
§ 112 that the cross-section increases somewhat with decreasing 
temperature . Accordingly, the viscosity decreases with decreas
ing temperature more rapidly than Vr. 

T h e extent to which the approximate equahty of the coeffi
cients V, X and D is maintained for gases can be seen, for example , 
from their values for air at 0°C: the kinematic viscosity ν = 0-13, 
the thermal diffusivity χ = 0-19, and the self-diffusion coefficient 
of nitrogen and oxygen D = 0· 18. 

T h e following are the values of the viscosities of some gases 
and liquids at 20°C: 
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and h the distance between the planes; in Fig. 131 the lower 
plane is at rest and the upper plane moves with velocity UQ. T h e 
hquid adjoining the walls is carried along by them, so that the 
velocity of the liquid is zero and UQ at the lower and upper wahs 

tioned in §52 that the difference be tween a hquid and an amor
phous sohd is purely quanti tat ive. F o r example , rosin is a sohd 
at room tempera ture , but even at 50 -70°C it behaves as a fluid 
of high but measurable viscosity, 10^ to 10^ P; for comparison we 
may note that the consistency of honey or syrup corresponds to a 
viscosity of about 5 x 10^ P. 

T h e mechanical propert ies of hquids such as glycerine and 
rosin are interesting in another respect also. T h e characterist ic 
difference be tween a sohd and a hquid is that the sohd resists a 
change in shape (has a shear modulus) but the hquid does not. 
We may say that the molecular s t ructure of a liquid is instantly 
"adjus ted" to a change in shape; in typical hquids , this occurs in 
a time of the order of the periods of thermal vibration of the 
molecules (10~^^ to lO'^^gec) hquid rosin, however , this 
"adjus tment" requires a longer t ime, and when the deformation 
varies very rapidly it may be unable to occur; in rosin at 50 -70°C 
the characterist ic t ime is 10"'* to 10"" sec. T h u s such a subs tance 
behaves as an elastic solid with a certain shear modulus under a 
very rapidly changing external action (due to sound waves for 
example), but with respect to a slowly varying action it behaves 
as an ordinary liquid with a certain viscosity. 

§ 119. Poiseuille's formula 
We may use the formula Π = — 17 duldx to solve a number of 

simple problems relating to the flow of a viscous liquid. 
Let us first calculate the frictional force be tween two parallel 

solid planes in relative motion, with a liquid of viscosity η in 
the space between them. Let UQ be the velocity of this motion. 
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respectively. In the region be tween the walls, the velocity u 
varies linearly: 

where χ is the distance from the lower wall; this result is derived 
in the same way as in the exactly similar problem of thermal 
conduction in a plane layer (§110). T h e required frictional force 
acting on unit area of each of the solid planes and tending to 
slow down their relative motion is given by the momentum flux Π, 
as described in §117; this is 

Π = WoV^, 

and is thus proport ional to the relative velocity UQ of the planes 
and inversely proport ional to the distance be tween them. 

Let us next consider the flow of hquid in a cyhndrical tube of 
radius a and length L, with different pressures Pi and P2 main
tained at the ends of the t ube ; the liquid then flows along the 
tube under the action of the pressure difference Ap = p2 — pv 
T h e flow velocity u of the liquid is everywhere along the axis 
of the tube , and its magnitude varies in the radial direction 
(perpendicular to the axis), depending on only one coordinate , the 
distance r from the axis. W e can therefore write the momentum 
flux t ransported radially as 

n = —17 duldr. 

Let us consider a volume of hquid bounded by a cyhndrical 
surface of radius r within the tube and coaxial with it. T h e total 
flux of momentum through this surface (whose area is lirrL) is 

InrLIi = - ΙπνΙτ) duldr. 

This is the frictional force exer ted on the volume of hquid in 
question by the remaining hquid, and is balanced by the force 
due to the pressure diff^erence be tween the ends of the cyhnder , 
which is τΓΓ^Δρ. Equating these forces, we obtain 

duldr = -{rl2Ly))Ap, 

whence 

u = — {f^lALj)) Δ/7 + constant . 
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Let us determine the mass Μ of hquid leaving the tube per 
unit t ime. If V{r) denotes the volume of liquid leaving per unit 
t ime through the cyhnder of radius r, the differential of this 
function is evidently 

dV{r) = u{r)dS, 

where u{r) is the velocity of the liquid at a dis tance r from the 
axis, and dS is the area of an annulus of radius r and width dr. 
Since dS = Inrdr, we have 

dV(r) = lirmdr 

= {7T^pl2Ly)){a'-r')rdr 

= (π^p|4Lη)(a'-f^)d(r'). 

V(r) = {nApl4Lv){a'r'-ir^); 

H e n c e 

the arbitrary constant is taken as zero , since we must have 
F(0) = 0. T h e total volume of liquid leaving the tube per unit 

T h e arbitrary constant is determined from the condit ion that 
the velocity is zero at the surface of the tube , i.e. for r = a. T h u s 
we have finally 

u = {^p|4Lη){a'-ñ. 

T h u s a liquid flowing in a tube has what is called a parabolic 
velocity profile: the velocity varies quadraticaUy from zero at 
the wall to a maximum value (Wmax = a^í^p¡4Lr¡) on the axis of 
the tube (Fig. 132). 
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t ime is equal to the value of V(r) for r = a. Multiplying this by 
the density ρ of the liquid, we find the required mass : 

Μ = {πΑρΙ81ν)α\ 

This is cahed Poiseuille's formula. W e see that the quanti ty of 
liquid leaving the tube is proportional to the fourth power of the 
tube radius. 

T h e examples discussed above relate to steady flow of a hquid, 
in which the velocity of the hquid at any point in the flow is 
constant in time. O n e example of non-steady motion may be 
mentioned here. Let us assume that a disc immersed in a hquid 
executes torsional oscillations in its plane; the hquid entrained 
by the disc also oscillates. T h e s e oscillations are , however , 
damped with increasing distance from the disc, and the quest ion 
arises of the order of magnitude of the distance at which an 
appreciable damping occurs . This question is formahy equivalent 
to the one discussed in §111 concerning thermal oscillations 
caused by a plate with variable temperature . T h e required 
"penetra t ion dep th" L of the oscillatory motion in the hquid is 
obtained by replacing the thermal diffusivity χ, in the formula 
derived in § 111, by the kinematic viscosity ν of the hquid: 

L ~ ν ( ^ ω ) , 

where ω is the frequency of the oscillations. 

§ 120. The similarity method 
Some simple problems of the motion of a hquid have been 

discussed above. In more complex cases , an exact solution of 
the problem usually involves very great mathematical difficulties, 
and is as a rule impossible. F o r example , it is not possible to 
give a general solution of the motion through a liquid of a body 
having even such an apparently simple form as that of a sphere. 

Consequent ly , in various problems of the motion of a hquid, 
great importance at taches to simple methods based on con
sideration of the dimensions of the physical quantit ies on which 
the motion can depend. 

Let us consider, for example , the uniform motion of a sohd 
sphere through a liquid, and let the problem be to determine the 
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drag force F exper ienced by the sphere . [ Ins tead of regarding 
the body as moving through a hquid, we could take the precisely 
equivalent problem of flow of a hquid past a body at rest; this 
s tatement of the problem corresponds to observat ions of gas 
flow past bodies in a wind t u n n e l ] 

T h e physical propert ies of a hquid which determine its flow 
or the motion of bodies in it are described by only two quanti t ies: 
the density ρ and the viscosity η . In addition, in the case con
sidered the motion depends on the velocity u of the sphere and 
its radius a. 

T h u s we have altogether four parameters , whose dimensions 
are as follows: 

[p] = g/cm^ [η] = g/cm.sec, [w] = cm/sec , [a\ = cm. 

F r o m these we can form a dimensionless quanti ty as follows. 
T h e dimension g, first of aU, can be ehminated in only one way: 
by dividing η by ρ to give the ratio ν = ηΐρ, with dimensions 
[p] = cm^/sec. Nex t , to ehminate the dimension sec, we divide 
u by v: [ulv] = 1/cm. A dimensionless quanti ty is then obtained 
by multiplying the ratio ulv by the radius a. This quanti ty is 
denoted by the symbol Re : 

Re = uajv = puajiq, 

and is called the Reynolds number, it is a very important proper ty 
of the motion of a hquid. Clearly any other dimensionless quanti ty 
can only be a function of the Reynolds number . 

Le t us re turn now to the determination of the drag force. I ts 
dimensions are g .cm/sec^ A quanti ty having these dimensions 
which can be formed from the same parameters is, for example , 
pu'a'. Any other quantity having the same dimensions can be 
writ ten as a product of pu'a' and some function of the dimen
sionless Reynolds number . W e can therefore say that the 
required drag force is given by a formula of the type 

F = pu'aJ{Ké). 

T h e unknown function / ( R e ) cannot , of course , be determined 
from dimensional considerat ions alone, but we see that by 
means of these considerat ions we have been able to reduce the 
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problem of determining a function of four parameters (the 
force f as a function of p , η , « and a) to a problem of determining 
a single function / ( R e ) . This function may be found experi-
mentahy, for example. By measuring the drag on any one 
sphere in any one liquid and plotting from the results a graph of 
the function / ( R e ) , we can ñnd the drag in the motion of any 
sphere in any hquid. 

T h e above arguments are general and apply, of course , to 
steady motion in a hquid of bodies of any form (not only spheri
cal). T h e quantity a in the Reynolds number must then be taken 
as some hnear dimension for a body of given shape, and we are 
thus able to compare the flow round geometrically similar bodies 
which differ only in size. 

Motions which have the same value of the Reynolds number 
for different values of the parameters p , η , w, α are said to be 
similar. T h e entire pat tern of the motion of the liquid in such 
cases differs only in the scale of dis tances, velocities etc . 

Although for brevity we have spoken of hquids , the whole of 
the above discussion applies to gases. T h e only condition as
sumed to be satisfied is that the density of the medium (liquid or 
gas) does not undergo any appreciable change during the motion, 
and may therefore be regarded as constant ; in such circum
stances the moving medium is said to be incompressible. Al though 
from the ordinary point of view a gas is an easily compressible 
medium, the changes in pressure which occur in a gas during its 
motion are usually insufficient to cause any appreciable change 
in its density. T h e gas ceases to behave as an incompress
ible medium only at velocities comparable with that of sound. 

§121. Stokes'formula 
Let us again consider the drag F encountered by a body moving 

in a hquid (or gas). When the velocity is suflftciently smah, the 
drag force is a lways proport ional to the velocity. In o rder to 
derive such a relation from the formula 

F = p ^ y ( R e ) , 

we must suppose that at low velocities the function / ( R e ) is 
of the form cons tant /Re . This gives 

F = constant x ηαα. 
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We see that, if the drag is proport ional to the velocity, it neces
sarily follows that the drag is also proport ional to the linear 
dimension of the body (and to the viscosity of the hquid). 

T h e determination of the proport ionahty coefficient in this 
relation requires more detailed calculations. When a sphere 
moves in a hquid, the constant is found to be όττ, i.e. 

F = βπιηαα, 

where a is the radius of the sphere. This is Stokes'formula. 
T h e above discussion enables us to state more precisely what 

is meant by a "sufficiently smal l" velocity for S tokes ' formula to 
be vahd. Since the form of the function / ( R e ) is in quest ion, the 
required condition must relate to the values of the Reynolds 
number , and since the number Re is proport ional to the velocity 
u (for a given size of the body) , it is clear that the condition for 
the velocity to be small must be that the dimensionless number 
Re is smaU: 

Re = aulv < 1. 

Hence we see that the condition for the velocity to be "sufficiently 
smaU" is a relative one. T h e actual range of permissible velocities 
depends on the size of the moving body (and on the viscosity 
of the liquid). F o r very smaU bodies (e.g. fine particles, suspended 
in a liquid, in Brownian motion) S tokes ' formula is vahd even 
for velocities which in other respects could not be regarded as 
small. 

If a sphere moves in a liquid under the action of an external 
force Ρ (for instance, the force of gravity, with al lowance for the 
partial loss of weight in the hquid), a uniform motion will finally 
be es tabhshed with a velocity such that the force Ρ is jus t 
balanced by the drag force. If P = F, the velocity is given by 

u = ΡΐβπαΎ). 

This formula is frequently used to determine the viscosity of 
a hquid from a measurement of the rate of fall of a solid sphere 
in i t T h e viscosity may also be determined by means of Poiseuille 's 
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formula, by measuring the rate of outflow of a liquid from a pipe 
along which it is impelled by a given pressure difference. 

S tokes ' formula is also the basis of a method of measuring the 
unit charge, first used by Milhkan to measure the charge on the 
electron. In these experiments fine droplets produced by an oil 
spray were placed in the space be tween horizontal plates forming 
a plane capacitor. T h e droplets have a charge owing to electrifica
tion in the spraying process or absorption of ions from the air. 
By observing under a microscope the rate of fah of a droplet by 
the effect of its weight alone, we can use Stokes ' formula to 
calculate the radius and hence the mass of the drop (whose 
density is known). Then , by applying a suitable potential differ
ence across the capacitor, we can bring the droplet to rest , the 
downward force of gravity being balanced by the upward electrical 
force on the charged droplet. Knowing the weight of the droplet 
and the electric field strength, we can calculate the charge on the 
droplet. Such measurements show that the charge on the droplets 
is always an integral multiple of a certain quanti ty, which is 
evidently the unit charge. 

§122. Turbulence 
T h e flow of a liquid in a pipe as described in § 119 is orderly and 

smooth: each hquid particle moves in a fixed straight hne and the 
whole pat tern of the flow is like the motion of various layers of 
liquid with diflFerent relative velocities. This kind of regular s teady 
flow of a hquid is called laminar flow. 

It is found, however , that a hquid flow of such a kind continues 
to occur only when the Reynolds number is suflBciently smah. 
F o r flow in a pipe, this number may be defined by the formula 
Re = udiv, where d is the diameter of the pipe and u the mean 
velocity of the liquid. F o r example, if the flow velocity is increased 
in a pipe of given diameter, a point is reached at which the nature 
of the flow changes completely. It becomes extremely dis
ordered, and instead of smooth hues the hquid particles describe 
tangled, meandering and continuahy changing paths . Such motion 
is said to be turbulent. 

T h e diflFerence be tween the two types of motion appears very 
clearly if we observe the flow in a glass tube and introduce a smah 
quantity of a coloured liquid into the flow through a capillary. 
A t low velocities, the coloured hquid is carried along by the 
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main flow as a thin straight filament. At high velocities, however , 
this filament is disrupted and the coloured hquid mixes rapidly 
and almost uniformly with the entire flow. 

If we follow the variation of the liquid velocity with t ime at 
any given point in a turbulent flow, we find irregular random 
fluctuations of the velocity about some mean value. T h e mean 
values of the velocity describe the pat tern of motion of the liquid 
in which the irregular turbulent fluctuations or eddies are smoothed 
out. This averaged velocity is usuafiy what is meant in speaking 
simply of the velocity of a turbulent hquid flow. 

Turbulent mixing of a hquid is a much more efficient means of 
transferring momentum than the process of molecular transfer 
by internal friction in a laminar flow. F o r this reason the velocity 
profile over the cross-section of a pipe in turbulent flow is con
siderably different from that in laminar flow. In the latter, the 
velocity gradually increases from the wafi to the axis of the pipe, 
but in turbulent flow the velocity is a lmost constant over a large 
part of the cross-section of the pipe, faUing rapidly in a thin layer 
adjoining the wall to the value zero which it must have at the 
wall itself. 

T h e unimportant role of viscosity in compar ison with turbulent 
mixing also has more general consequences : the viscosity has 
no direct effect on the propert ies of turbulent flow, and these 
propert ies are therefore determined by a smaller number of 
quantities than in laminar flow, since these do not include the 
viscosity of the liquid. T h e possibilities of construct ing different 
combinations having the same dimensions from the remaining 
quantities are much more restricted, and the application of the 
similarity method may therefore immediately give more specific 
results. 

Let us find, for example , the relation be tween the mean velocity 
u of flow in a pipe and the pressure gradient which brings about this 
flow (i.e. the ratio Ap/L, where A/? is the pressure difference 
between the ends of the pipe and L the length of the pipe). T h e 
quantity Δρ/L has the dimensions g.cm~^.sec~^. T h e only combina
tion having these dimensions which can be const ructed from the 
available quantities (the velocity u, the diameter d of the pipe 
and the density ρ of the hquid) is pu'ld. We can therefore assert 
that 

Δρ/L = constant X pu'ld, 
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where the constant is a pure number. T h u s in turbulent flow in a 
pipe the pressure gradient is proport ional to the square of the 
mean velocity, and not to the velocity itself as in laminar flow. 
[This law, however , is only approximately vahd, since no account 
has been taken of the effect of the boundary layer at the wall, 
in which the velocity decreases very rapidly and the viscosity 
plays an important part.] 

It has already been mentioned that flow in a pipe becomes 
turbulent for sufficiently large Reynolds numbers . Exper iment 
shows that, for this to occur , the Reynolds number must exceed 
1700. F o r smaller values of the Reynolds number , laminar flow 
is completely stable. This means that , when the flow is per turbed 
by some external agency (vibration of the pipe, roughness of the 
pipe inlet, etc.), the resulting deviations from smooth flow are 
rapidly damped. When Re > 1700, on the other hand, perturba
tions of the flow lead to disruption of the laminar condition and 
the appearance of turbulence. By means of special precaut ions 
to reduce the perturbat ions which inevitably occur, it is possible 
to postpone the transition to turbulent flow until stih higher 
values of Re are reached, and laminar flow in a pipe has been 
observed even for Re = 50 000. 

Turbulence is a general feature of flow at very high Reynolds 
numbers . It occurs not only in flow in a pipe but also in flow of a 
liquid (or gas) past various solid bodies (or, what amounts to the 
same thing, motion of these bodies through a hquid). Le t us 
consider the pat tern of such flow in more detail. 

Because of the law of similarity discussed in §120, it is im
material what is the precise reason for the large value of the 
Reynolds number , whether the size a of the body is large, the 
velocity u is large, or the viscosity Ύ] is smah. In this sense we 
can say that for very large Reynolds numbers the liquid behaves 
as if its viscosity were very low. This apphes , however , only to a 
liquid flowing far from sohd walls. N e a r the surface of a sohd a 
thin boundary layer is formed in which the velocity decreases 
from the value corresponding to frictionless motion to the value 
zero corresponding to the adhesion of the viscous hquid to the 
wah. T h e thickness of the boundary layer decreases with in
creasing Reynolds number . Within this layer the velocity changes 
very rapidly, and hence the viscosity of the hquid is of decisive 
importance. 
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occurs for a sphere when Re is greater than about 1000, Re being 
defined as du/v, where d is the diameter of the sphere. 

T h e propert ies of the boundary layer lead to the important 
phenomenon of separation in flow past bodies . W h e n a hquid 
flows past a body, it first of all moves along the front part of the 
body, which becomes wider in the direction of flow. T h e s t reams 
of hquid undergo a kind of compress ion, and their velocity 
accordingly increases and the pressure decreases , as follows 
from Bernoulh 's equation (see §61). In flow along the rear part 
of the body, however , the s t reams expand as the body nar rows , 
the velocity in them decreases , and the pressure correspondingly 
rises. T h u s in this part of the flow the pressure increases in the 
direction of flow, i.e. the pressure difl'erence opposing the motion 
of the hquid increases. This pressure difference arising in the 
main flow acts also on the liquid in the boundary layer and 
retards it. T h e liquid particles in the boundary layer move more 
slowly than in the main flow and begin to move even more slowly, 
until, when a point on the surface of the body is reached at which 
the pressure is sufficiently high, the particles in the boundary 
layer come to rest and begin to move in the opposi te direction. 
Thus a reversed motion occurs near the surface of the body, 
despite the fact that the main flow continues to move in the 
same direction. A t points stiU further along the surface of the 
body, the reverse flow becomes wider and ultimately displaces 
the main flow completely, which thus becomes separated from 
the surface. 

This motion with a reversed flow, however , is entirely unstable 
and immediately becomes turbulent. T h e turbulence extends 
forward along the flow and gives rise to a long strip of hquid in 
turbulent motion behind the body, caUed the turbulent wake; 
this is shown diagrammatically in Fig. 133. F o r example , this 
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At very large Reynolds numbers the formation of the turbulent 
wake is the principal cause of the drag on the body moving in 
the hquid. U n d e r these conditions we can again use dimensional 
arguments to determine the law of drag. T h e drag force F on 
a body (of given shape) can depend only on the size a of the body, 
its velocity u and the density ρ of the liquid, but not on its 
viscosity. F r o m these three quantities only one combination 
having the dimensions of force can be derived, namely the 
product pu^a^. W e can therefore say that 

F = constant X pu^a^, 

where the constant depends on the shape of the body. T h u s , at 
very high Reynolds numbers the drag force is proport ional to 
the square of the velocity {Newton's law of drag). It is also 
proport ional to the square of the hnear size of the body or, what 
is the same thing, to its cross-sectional area (which is itself 
proportional to α^). Finally, the drag force is proport ional to 
the density of the liquid. In the opposi te case of smah Reynolds 
numbers , it wih be remembered that the drag is proport ional 
to the viscosity of the hquid and independent of the density. 
Whereas at smah Reynolds numbers the drag is determined by 
the viscosity of the hquid, when Re is large the effect of the 
inertia (mass) of the liquid becomes predominant . 

T h e drag at large Reynolds numbers depends very greatly on 
the shape of the body, which determines the point of separation 
of the flow and therefore the width of the turbulent wake. T h e drag 
due to the turbulent wake is smaller when the wake is narrower . 
This determines the choice of shape of a body such that the drag 
force is the least possible; such a shape is said to be streamlined. 

A streamhned body must be rounded at the front and drawn 
out at the back to run smoothly to a pointed end, as shown in 
Fig. 134 (this diagram may be regarded as showing the longi
tudinal cross-section of an elongated sohd of revolution or as 
the cross-section of a "wing" of large span). T h e hquid flow along 
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such a body closes up smoothly at the pointed end, with no sharp 
turns anywhere ; this eliminates the rapid rise of pressure in the 
direction of the flow. T h e flow is separated only at the actual 
point, and the turbulent wake is therefore extremely narrow. 

In connection with the drag at high velocities, it should be 
mentioned that the foregoing discussion refers only to velocities 
small compared with that of sound, so that the liquid may be 
regarded as incompressible. 

§123. Rarefied gases 
The conclusions drawn in §§113 and 118 concerning t ransport 

processes in gases are valid only so long as the gas is not too 
rarefied: the mean free path of the molecules must be smaU 
compared with the size of the bodies considered (the vessel 
containing the gas, the bodies moving through the gas, etc.). 
However , even at a pressure of 10~^ to 10"^ mm H g the mean 
free path is 10 -100 cm, and is comparable with or even exceeds 
the usual dimensions of apparatus . A similar situation occurs in 
problems of space flight near the earth: even at an altitude of 
about 100 km the mean free paths of the particles in the ionised 
gas are several tens of metres . 

He re we shafi apply the term rarefied to gases in which the 
mean free path of the molecules is large compared with the size 
of the bodies. This criterion depends not only on the state of the 
gas itself but also on the size of the bodies that are in quest ion. 
A given gas may therefore behave as a rarefied gas in some 
conditions but not in others . 

Let us consider the transfer of heat be tween two sohd plates 
heated to different temperatures and immersed in a gas. T h e 
mechanism of this process is totally different in rarefied and non-
rarefied gases. In non-rarefied gases, the transfer of heat from 
the hotter to the colder wafi occurs by the gradual "diffusion of 
energy" transferred from one molecule to another in colHsions. 
But if the mean free path / of the gas molecules is large in com
parison with the distance h be tween the waHs, the molecules in 
the space between the plates will scarcely ever colHde with one 
another, and will move freely after reflection from one plate until 
they coHide with the other. When scat tered from the hotter plate, 
the molecules gain some energy from it, and they give up part of 
their energy on coHiding with the colder plate. 
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Under these conditions there is obviously no meaning in speak
ing of the tempera ture gradient in the gas be tween the plates, 
but by analogy with the expression q = — KdTjdx for the heat 
flux we can now define the " thermal conduct ivi ty" of a rarefied 
gas by the relation 

q = -K{T2-T,)IK 

where Γ2 — is the temperature diff'erence be tween the plates. 
W e can est imate this conductivity in order of magnitude directly 
by analogy with the expression derived in §113 for the ordinary 
thermal conductivity: 

κ - vlnClNo. 

There is no need to repeat the derivation; we need only note that , 
since we now have colhsions with the plates instead of be tween 
molecules, the mean free path in this formula must be replaced 
by the distance h be tween the plates: 

κ - vhnCiNo 

( C is the molar specific heat of the gas, ν the thermal velocity of 
the molecules, and η the number of molecules per unit volume). 
Substituting η = pjkT and replacing the product N^k by the gas 
cons tan t / ? , we have 

κ ~ phvClRT. 

We see that the " thermal conduct ivi ty" of a rarefied gas is 
proportional to its pressure , unhke the thermal conductivity of 
a non-rarefied gas, which is independent of the pressure . It must 
be emphasised, however , that this conductivity is no longer a 
quantity pertaining to the gas alone: it depends also on the 
distance h be tween the two bodies. 

T h e decrease in the thermal conductivity of a rarefied gas with 
decreasing pressure is the basis of the use of an evacuated space 
for thermal insulation, as for instance in D e w a r vessels for keep
ing liquefied gases; these have double wahs with the air evacuated 
from the space between. A s the evacuation proceeds the ther-
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mal conductivity of the air at first remains constant , and begins 
to decrease rapidly only when the mean free path becomes 
comparable with the distance be tween the walls. 

Internal friction in rarefied gases behaves similarly. Let us 
consider, for example , two solid surfaces with a layer of rarefied 
gas be tween them and moving with relative velocity u. T h e 
"viscos i ty" of the gas is defined by the relation 

Π = 7]u¡h, 

where Π is the frictional force per unit area acting on the solid 
surfaces, and h the distance be tween them. Replacing the mean 
free path / by A in the formula η ~ nmvl derived in §118, we 
obtain 

Ύ) ~ nmvh, 

and putting η = p/kT and kT ~ mv' we have finally 

η ~ phlv. 

Thus the "viscos i ty" of a rarefied gas is also proport ional to the 
pressure . Like the thermal conductivi ty, the viscosity depends 
not only on the propert ies of the gas itself but also on the charac
teristic dimensions which appear in a given problem. 

Let us use the above expression for η to est imate the drag F 
on a body moving in a rarefied gas. H e r e h must be taken as the 
hnear size a of the body. T h e frictional force per unit area of 
the surface of the body is 

Π ~ rju/a ~ pulv, 

where u is the velocity of the body. Multiplying this by the area 
S of the surface of the body, we obtain 

F ~ upSlv. 

Thus the drag exerted by a rarefied gas is proport ional to the 
surface area of the body, unlike the drag in a non-rarefied gas, 
which is proportional to the linear size of the body. 
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W e may also mention some interesting effects relating to the 
outflow of a rarefied gas through smah holes, of size much less 
than the mean free path of the molecules. This outflow, called 
effusion, is quite different from the ordinary outflow through 
large holes, where the gas flows out in a je t hke a cont inuous 
medium. In eflFusion the molecules leave the vessel independently 
and form a "molecular b e a m " in which each molecule moves with 
the velocity with which it approached the hole. 

T h e rate of outflow of a gas in effusion, i.e. the number of 
molecules leaving the hole per unit t ime, is in order of magnitude 
Snv, where S is the area of the aperture. Since η = pIkT, υ ~ 
V(kTlm), we have 

Snv - SplV(mkT). 

T h e rate of effusion thus decreases with increasing mass of the 
molecule. T h u s , in effusion of a mixture of two gases, the out
flowing gas will be enriched in the hghter component . This is 
the basis of one common method of isotope separation. 

Let us now imagine two vessels containing gases at different 
temperatures and Tg and connected by a smah hole (or a 
tube of small diameter) . If the gases were not rarefied, the 
pressures in the two vessels would become equal and the force 
exerted by each gas on the other at the hole would be the same. 
F o r rarefied gases, however , this is no longer t rue , since the 
molecules pass freely through the hole without colhding with 
one another. T h e pressures pi and P2 then take values such that 
the numbers of molecules passing through the hole in each 
direction are the same. According to the expression derived 
above for the rate of outflow, this means that the condition 

PJ^/T,=PJVT2 

must hold. Thus different pressures are set up in the two vessels , 
the pressure being higher in the vessel with the higher temper
ature. This is called the Knudsen effect. In particular, it must 
be taken into account in the measurement of very low pressures ; 
a difference in the temperatures of the gas under examination 
and the gas in the measuring instrument causes a corresponding 
difference in pressure. 
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§124. Superfluidity 
It has already been mentioned that liquid helium is exceptional 

in its physical propert ies , being a "quan tum hquid" , whose 
propert ies cannot be unders tood on the basis of the concepts 
of classical mechanics . This is shown by the fact that helium 
remains hquid at all temperatures down to absolute zero (§72). 

H e h u m becomes liquid at 4·2°Κ. At about 2·2°Κ it remains 
hquid but undergoes a further transformation, a phase transition 
of the second kind (see §74). A t tempera tures above the t rans
formation point hquid hehum is generally called helium I, and 
below it hehum I I . 

H e h u m II has the following propert ies . First ly, heat transfer 
is extremely rapid. A tempera ture difl'erence be tween the ends 
of a capillary ñlled with helium II is very quickly ehminated, 
and hehum II is in fact the best heat conductor known. This 
property, incidentaUy, explains the striking change that is seen 
on observing visually the transformation of helium I into helium 
I I : the surface of the continuously boihng hquid suddenly 
becomes completely calm and smooth when the transition point 
is reached. T h e reason is that , because of the very rapid removal 
of heat from the vessel walls, the vapour bubbles typical of 
boiling are no longer formed there , and helium II evaporates 
only from its free surface. 

T h e fundamental and primary proper ty of hquid helium, 
however , is that of superfluidity, d iscovered by P. L. Kapitsa. 
This refers to the viscosity of hquid helium. 

T h e viscosity of a liquid can be measured from its rate of flow 
through narrow capillaries, but in the present case this method 
is unsuitable, and a method is required which allows the flow 
of a greater quantity of liquid than can pass through a narrow 
capillary. This is achieved by an experiment in which hehum II 
passes along a very narrow gap (about 0.5 μ wide) be tween two 
discs of ground glass (Fig. 135). Yet even under these condit ions 
hquid hehum exhibits no viscosity whatever , which shows that 
the viscosity is exactly zero. T h e absence of viscosity in helium 
II is what is referred to by the term "superfluidity". 

T h e superfluidity of hehum II is directly responsible for the 
' 'creeping film" which it forms. When hehum II is placed in 
two vessels separated by a partit ion, it spontaneously takes 
the same level in both vessels after a certain time. This transfer 
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takes place along a thin ñlm (a few hundred angstroms thick) 
which is formed by the helium on the wahs and which acts as 
a siphon (Fig. 136). T h e mere fact that a ñlm is formed is not 
a specific proper ty of hehum I I . A film is formed by any hquid 
which wets the sohd surface. In ordinary hquids, however , the 
formation of the film and its spreading over the surface occur 
extremely slowly because of the viscosity of the hquid. T h e 

F I G . 1 3 6 . 

formation and movement of the film occur rapidly for hehum I I , 
however , because of its superfluidity. T h e velocity of the creeping 
film is several tens of cent imetres per second. 

W e have discussed the viscosity of hehum as measured by 
the rate of flow of the liquid through a narrow gap. But the 
viscosity of a hquid can also be measured in another way. If a 
disc (or cyhnder) suspended in the hquid executes torsional 
oscillations about its axis, the friction on the disc which retards 
its oscihations is a measure of the viscosity. It is found that in 
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such measurements hehum II shows a smaU but non-zero 
viscosity (of the order of 10~^ poise). 

T h e theory (due to L. D . Landau) which gives an explanation 
of these paradoxical propert ies of hquid helium cannot be 
explained here before the principles of quantum mechanics 
have been stated. We shall, however , describe the remarkable 
physical picture which resuhs from this theory. 

It usuaUy appears self-evident that , in order to describe the 
motion of a hquid, it is sufficient to specify its velocity at every 
point. Yet this seemingly obvious s ta tement is invalid for the 
motion of the quantum liquid hehum II . 

H e h u m II is found to be capable of executing two motions 
simultaneously, so that, in order to describe the flow, the values 
of not one but two velocities at every point must be specified. 
T h e situation may be visuahsed by regarding helium II as a 
mixture of two hquid components which can move independently 
" th rough" each other without mutual friction. In reahty, however , 
there is only one hquid, and it must be emphasised that the 
"two-fluid" model of hehum II is only a convenient way of 
describing the phenomena which occur in it. Like any description 
of quantum phenomena in classical t e rms , it is not completely 
adequate —as is reasonable , since our intuitive ideas reflect what 
we encounter in ordinary life, whereas quantum phenomena 
usuaUy appear only in the microscopic world inaccessible to 
our direct perception. 

Each of the two motions simultaneously occurring in hquid 
hehum involves the displacement of a certain mass of liquid. In 
this sense we can speak of the densities of the two " c o m p o n e n t s " 
of hehum I I , although it must again be emphasised that this 
terminology does not at ah signify that the a toms of the sub
stance can actuaUy be divided into two classes. Each of the 
two motions is a collective motion of a large number of the same 
hquid atoms. 

T h e two motions have entirely different propert ies . O n e 
motion takes place as if the corresponding " c o m p o n e n t " of the 
liquid had no viscosity; this is cahed the superfluid component . 
T h e other {normal) component moves like an ordinary viscous 
hquid. 

Another important difference be tween the two types of motion 
in hehum II is that the normal component t ransports heat in 
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its motion, but tlie superfluid motion is not accompanied by 
any transport of heat. In a certain sense we may say that the 
normal component is the heat itself, which in liquid helium 
becomes independent and separate from the mass of the liquid, 
and becomes able to move relative to a "background" that is at 
absolute zero. This picture is radically diff'erent from the usual 
classical idea of heat as a random motion of a toms , inseparable 
from the whole mass of the substance. 

These concepts give an immediate explanation of the principal 
resuhs of the experiments described above. Firs t of ah, they 
eliminate the contradiction be tween the measurements of the 
viscosity of the liquid from the friction experienced by a rotating 
disc and from the flow of liquid through a gap. In the first case 
the disc is retarded because , when it rotates in hquid helium, it 
undergoes friction with the "no rma l " part of the hquid, and the 
viscosity of this component is essentiahy what is measured. In 
the second case, the superfluid part of the hehum flows through 
the gap, while the normal component , which has a viscosity, is 
retarded and "pe rco la te s" very slowly through the gap. T h u s , 
in this experiment , the zero viscosity of the superfluid component 
is observed. 

But since the superfluid motion does not transfer heat , the 
outflow of hehum through the gap causes a kind of fihering off 
of liquid without heat , the heat remaining in the vessel. In the 
ideal limiting case of a suflSciently narrow gap, the hquid leaving 
would be at absolute zero. In an actual experiment its temper
ature is not zero, but is lower than that of the vessel. F o r example , 
by driving helium II through a porous filter its tempera ture can 
be lowered by 0-3 to 0-4°, and this is a large amount when the 
temperature is only 1-2°K. 

T h e very high rate of heat transfer in hehum II also finds a 
natural explanation. Ins tead of the slow process of molecular 
t ransport of energy in ordinary thermal conduct ion, we here 
have a rapid process of heat transfer by the normal component 
of the hquid. T h e relation be tween the process of heat transfer 
in hehum II and the occurrence of motion in it is clearly shown 
by the fohowing experiment. A light vane is placed in front of 
a hole in a smah vessel filled with hquid hehum (and immersed 
in liquid helium) (Fig. 137). When the hehum in the vessel is 
heated, the vane is deflected. This occurs because heat flows 
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from the vessel as a s t ream of the viscous normal component , 
which deflects the vane in front of the hole. In the opposi te 
direction there is an inflow of the superfluid component , so that 
the actual quanti ty of hquid in the vessel is unchanged and the 
latter remains fuh. T h e superfluid component has no viscosity 
and does not move the vane as it flows past it. 

T h e presence of two " c o m p o n e n t s " in helium II is shown 
directly in an experiment based on the fohowing idea. When a 
cyhndrical vessel containing hquid helium rota tes , only par t of 
the liquid should be carried round, namely the " n o r m a l " part , 
which undergoes friction against the walls; the "süperfluid" 

~z Heaterj 
Vane —: 

F I G . 1 3 7 . 

part should remain at rest . In an actual experiment , the rotat ion 
of the vessel is replaced by torsional oscillations of a stack of 
numerous thin discs; this increases the area of the surface which 
entrains the liquid. 

A t temperatures above the transition point the hquid (hehum I) 
is entirely in the normal state and is entirely carried round by 
the rotating walls. A t the transition point a quahtatively new 
proper ty of the hquid first appears , namely the occurrence of 
the superfluid component , and this is the nature of the phase 
transition of the second kind in hquid hehum. A s the tempera ture 
decreases further, the fraction of the superfluid component 
becomes greater, and at absolute zero the hquid should become 
entirely superfluid. Figure 138 shows the form of the tempera ture 
dependence of the ratio of the density p„ of the normal component 
of the hquid hehum to the total density ρ of the liquid (the sum 
of the normal and superfluid densit ies Pn and p^ is, of course , 
always equal to the total density p). 
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Finally, let us consider a phenomenon in hquid helium related 
to the propagation of sound waves in it. Sound waves in an 
ordinary liquid consist of periodic compressions and rarefactions 
propagated through the liquid, in which each particle executes 
an oscihatory motion about the mean equihbrium position with 
a periodically varying velocity. In helium I I , however , two 
different motions can take place simultaneously with different 
velocities. The re are therefore two quite distinct possibihties 
for the motion in a sound wave. If the two components of the 
hquid execute an oscillatory motion in the same direction, 
moving as it were in unison, we have a sound wave of the same 
kind as in an ordinary liquid. 

T h e two components may also, however , execute oscillations 
in opposite directions, moving " th rough" each other , so that 
the masses t ransported in each direction are almost exactly 
equal. In such a wave (called a second sound wave) there are 
almost no compressions and rarefactions of the liquid as a whole. 
Instead, there are periodic oscihations of temperature in the 
hquid, since the mutual oscihations of the normal and superfluid 
components are essentially oscihations of heat relative to the 
"superfluid background" . Thus the second sound wave is a kind 
of " thermal w a v e " , and it is therefore clear that the source 
needed to create such a wave is a heater whose tempera ture 
varies periodicahy. 

T h e whole of the foregoing discussion has referred simply to 
hquid helium. It is necessary to make exphcit that this discussion 
relates only to one of the isotopes of helium, namely the common 
isotope He^. The re exists also another much rarer isotope, He^. 
By the methods of nuclear physics it is possible to separate this 
isotope in quantities sufficient for liquefaction and exper iments 
with the hquid. It is again a ' ' quantum hquid" , but its propert ies 
are entirely different, and in particular it is not a superfluid. 
Ahhough the two isotopes of hehum are chemically identical, 
there is a very important difference be tween them, due to the 
fact that the nucleus of the He^ a tom comprises an even number 
of particles (protons and neutrons) , and that of He^ an odd 
number. This difference has the result that the quantum propert ies 
of the two substances are entirely different, and so in turn brings 
about the difference in the physical propert ies of the hquids 
which they form. 
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d a m p e d 9 3 - 9 6 
forced 9 6 - 1 0 2 
natura l 89 
small 8 8 - 9 3 
torsional 93 

O s m o s i s 2 3 6 - 8 
O s m o t i c p res su re 2 3 6 - 8 

Paramet r i c r e sonance 102 
Part icle 3 
Pasca l ' s law 294 
Pendu lum 

c o m p o u n d 91 
Foucau l t 84 
simple 90 
simple equivalent 92 

Per iodic mot ion 2 9 , 8 6 - 1 0 4 
Perpe tua l mot ion 189 
Phase 

d iagrams 1 9 8 - 2 0 0 
of mat te r 197 
of oscil lation 87 
rule 251 
t ransi t ions 1 9 7 - 2 2 9 

of s econd kind 2 2 2 - 5 
Physical sys tem of units 18 
P lane of symmet ry 115 

glide 130 
Plast ic deformat ions 306 , 3 1 2 - 1 5 
Poiseuil le 's formula 348 
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Poisson ' s 
adiabat ic 181 
rat io 296 

Po lymorphism 218 
Potential barr ier 30 
Potential energy 22 

of electric charges 45 
of electr ic field 49 
of gravi tat ional field 5 8 
in uniform field 23 

Potential well 30 
P o w e r 26 
Precess ion 79 
Pressure 149 -51 

osmot ic 2 3 6 - 8 
partial 157 

Quant i ty of heat 168 

Radius vec tor 3 
Raoul t ' s law 240 
Rarefied gases 3 5 7 - 6 0 
Reac t ive forces 7 - 8 
Relat ivi ty of mot ion 2 
R e s o n a n c e 9 8 - 1 0 0 

paramet r ic 102 
Res tor ing force 88 
Resul tan t force 77 
Reve r se condensa t ion 246 
Reversibi l i ty of mot ion 187 
Reyno lds number 3 4 9 - 5 6 
Rigid b o d y 66 

mot ion of 6 6 - 8 5 
Rigidity, modulus of 302 
Rotary- reñec t ion axis 116 
Rota t ion of rigid body 6 6 - 6 8 , 7 2 - 7 6 

Sa tura ted 
solution 230 
vapour 2 0 3 - 7 

Screw axis 130 
Sectorial velocity 41 
Self-diffusion 332 
Semipermeable m e m b r a n e s 236 
Separa ted flow 355 
Shear deformat ions 3 0 1 - 5 
SI sys tem of units 1 8 , 4 5 , 5 0 
Similar mot ions 350 
Solid solutions 2 3 4 - 6 

Solidification of liquid mix tures 241 - 9 
Solubili ty 231 

p roduc t 263 
Solute 231 
Solut ions 2 3 1 - 5 1 

dilute 231 
solid 2 3 4 - 6 
weak 2 3 1 , 2 3 7 

Solvent 231 
Space g roups 1 2 9 - 3 1 
Specific hea t 1 6 9 - 7 0 

of gases 1 7 1 - 4 
of solids and liquids 1 7 6 - 7 

Stat ist ical weight 194 
S teady flow of gases and liquids 184-7 
S te reo i somer i sm 119 
S t o k e s ' f o r m u l a 351 
Subl imat ion 217 
Supercool ing of vapour s 2 0 7 , 2 8 9 - 9 1 
Superfluidity 3 6 1 - 6 
Superhea t ing of liquids 207 , 2 9 0 - 1 
Superpos i t ion of fields 46 
Supersa tu ra t ion of vapour s 2 0 7 , 

2 8 9 - 9 1 
Surface 

-active subs tances 280 
energy 2 7 6 
p h e n o m e n a 2 7 6 - 9 3 
p re s su re 285 
tens ion 2 7 6 - 9 , 2 8 1 - 2 

Symmet ry 1 1 5 - 4 3 
axis of 1 1 5 , 1 1 6 , 1 3 0 
cen t re of 115 
e lements 1 1 5 - 1 6 
plane of 1 1 5 , 1 3 0 
t ransla t ional 120 

T e m p e r a t u r e 1 4 4 - 9 
T h e r m a l 

conduc t ion 3 1 9 - 3 4 
conduct iv i ty 320 , 3 3 3 - 4 , 358 
diffusion 3 3 6 - 8 
diffusivity 320 
equil ibr ium 144, 151 , 1 8 8 - 9 , 

1 9 3 - 4 , 2 5 4 
expans ion 1 7 5 - 6 
mot ion 144 
p rocesses 1 7 8 - 9 6 
res is tance 324 
velocity 147 

T h e r m o d y n a m i c t empera tu re 145 
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Thermodynamics 
first law of 168 
second law of 189 

Time, units of 16 
Top 8 0 - 8 1 
Torque 38 
Torques, law of 75 
Torricelli's formula 187 
Torsion of rods 3 0 3 - 5 
Translation 

of crystal lattice 120 
of rigid body 66 

Transport phenomena 3 41 
Triple point 216 
Tube of force 52 
Turbulent flow 3 5 2 - 7 
Two-body problem 41 

Van der Waals 
equation 211 
interaction 1 1 3 - 1 4 

Velocity 4 
addition rule 5 
angular, see Angular velocity 
cosmic 6 2 , 6 4 
dimensions of 17 
of escape 6 4 
sectorial 41 
thermal 147 
units of 17 

Viscosi ty 3 4 1 - 6 6 
dynamic 342 
kinematic 342 

Uniform compression 300 
Uniform deformation 2 9 7 , 2 9 8 - 3 0 1 
Uniform extension 300 
Uniform field 

motion in 1 9 - 2 0 
potential energy in 23 

Unilateral compression 301 
Unit cell 120 
Units 1 5 - 1 8 

C G S system 18 
C G S E system 4 5 , 5 0 
derived 15 
physical system 18 
SI system 1 8 , 4 5 , 5 0 

Weight 59 
Wetting of surfaces 2 8 3 - 5 
Work 2 0 - 2 6 , 1 6 6 - 7 

dimensions of 2 5 - 2 6 
units of 2 5 - 2 6 

Work-hardening 3 0 6 , 3 1 4 

Yield point 308 
Young's modulus 296 

Zero-point vibrations 1 4 8 - 9 , 1 7 3 
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